"老板,我们也要上Agent!"
最近在各种技术交流群里,这句话出现的频率快赶上"元宇宙"刚火那会儿了。每当AI又展示什么新功能,总有人激动地喊着要做Agent,仿佛不上Agent就落后于时代。
可现实往往是这样的:花了几个月时间,投入一堆人力物力,做出来的Agent要么答非所问,要么执行到一半就"死机",要么干脆把简单问题复杂化。
最后老板问效果如何,只能尴尬地说"还在优化中"。 问题出在哪里?不是技术不行,而是路径选错了。
清醒认识:Agent不是万能药
很多人对Agent有个误解,以为它是万能的。
看之前Manus的演示视频,看到各种炫酷的展示,就觉得Agent可以解决一切问题。
真相是什么?
大模型本身就不是万能的,Agent也不可能是。它更像是一个放大器——如果底层逻辑对了,它能放大你的能力;如果底层逻辑错了,它只会放大你的错误。
我见过一个案例,某公司想用Agent做客服系统。
理想很美好:客户问什么,Agent都能智能回答,还能主动推荐产品。
结果呢?Agent经常答错问题,推荐的产品驴唇不对马嘴,客户投诉率反而上升了。
问题在哪?他们跳过了最基础的环节——连基本的FAQ都没梳理清楚,就想直接上Agent。这好比房子地基都没打好,就想盖摩天大楼。
Agent真正适合的场景有三种:复杂决策、难以维护的规则系统、严重依赖经验的非结构化数据处理
。
如果你的问题不在这三类里,老老实实用传统方法可能效果更好。
渐进式路径:从爬到跑的智慧
聪明的做法是什么?循序渐进。
第一步,提示工程
别小看这个环节,很多问题在这里就能解决。
我认识一个电商公司的技术负责人,他们最开始想做复杂的多Agent系统来处理商品描述。
最后发现,精心设计的提示词就能完成80%的工作,成本还低了一个数量级。
第二步,工作流
当单纯的提示词不够用时,考虑工作流。
这个阶段你还能控制主要逻辑,不会让AI跑偏太远。就像开车,你还握着方向盘。
第三步,单Agent
任务复杂到工作流也搞不定时,才考虑单Agent。
这时候你要放一部分控制权给AI,让它自己做决策。风险高了,但能力也强了。
第四步,多Agent
需要多个角色协同时,才用多Agent。这是最复杂的,也是最容易出问题的。
很多公司的问题是,一上来就想做多Agent系统,结果搞得复杂无比,维护成本奇高,效果还不如简单的工作流。
有个创业公司,CEO看了几篇技术文章就要求团队做"AI员工"。
团队花了半年时间做了个多Agent系统,几个虚拟员工在那里"开会讨论",看起来很炫酷。
实际使用时发现,这些AI员工经常在无关紧要的话题上"争论"不休,真正有用的结论很少。
最后还是回到了简单的工作流方案。
落地考量:成本和效果的平衡
技术可行不代表商业可行。
每次调用LLM的成本大概几分钱,听起来不多。
但如果你的Agent每天要处理10万次请求,每次平均调用5次模型,一个月下来就是好几万块。这还不算开发和维护成本。
我见过一个案例,某公司用Agent做简历筛选。
技术上完全没问题,筛选准确率也挺高。问题是成本太高了,每筛选一份简历要花8毛钱,而HR手工筛选的人力成本只要2毛钱。老板算了笔账,果断叫停了项目。
还有延迟问题。
如果你的应用要求0.5秒内响应,Agent基本是不可能的。
这时候老老实实用BERT这样的小模型,反而是明智选择。很多人有个误区,以为新技术一定比旧技术好。分类任务用BERT,生成任务用GPT,这个基本原则没过时。
错误容忍度也是关键考量。
如果Agent判断错了会造成重大损失,那就必须加人工干预。
我知道一个金融科技公司,他们的风控Agent有个原则:任何超过1万块的决策,都要人工复核。
技术再先进,也不能拿公司的钱开玩笑。
现实挑战:理想与现实的差距
Agent听起来美好,现实却很骨感。
Agent不是万能的,也不是必需的。在合适的场景用合适的技术,在能控制成本和风险的前提下追求效果,这才是理性的态度。
技术的进步让我们有了更多选择,但选择的智慧,还得靠我们自己。
你觉得呢?
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】