摘要:在AI可视化开发平台中,dify因为工作流组件多而深受大家的喜爱,但是di fy的知识库相对比较弱一点。因此有些部分工作流采用对接外部知识库的方式,而目前ragflow的知识库相对在开源的知识库中相对比较专业一点,因此很多ai的开发者会选择使用dify连接ragflow的知识库。本文介绍ragflow知识库和dify知识库的优势,以及如何配置dify到ragflow的知识库。
-
对比Ragflow知识库和dify知识库的优势
-
如何配置dify到ragflow的知识库
01
—
对比Ragflow知识库和dify知识库的优势
在知识管理领域,虽然RAGFlow 和 Dify 都是颇受关注的解决方案。然而,RAGFlow 在多个关键特性上展现出了超越 Dify 的优势,尤其是在提升检索内容准确性方面,这些特性发挥着至关重要的作用。
一、基于 DeepDoc 组件的复杂文档精确解析
RAGFlow 借助基于 DeepDoc 组件的 OCR 与布局识别技术,能够对复杂文档进行精确解析,提取关键信息。在实际业务场景中,企业面临的文档类型丰富多样,包括多语言混合、格式不规则、图表与文字紧密交织的复杂文档。例如,一份跨国企业的年度财务报告,其中可能包含多种语言的说明、复杂的财务图表以及多层级标题结构的文字阐述。Dify 在处理此类文档时,可能会因文档结构的复杂性而导致信息提取不完整或不准确。而 RAGFlow 的 DeepDoc 技术能够深入理解文档布局,通过先进的 OCR 技术精准识别文字,即便文字存在于复杂图表或模糊的扫描件中也能有效提取。同时,其布局识别技术可清晰界定标题、正文、图表的位置关系,从而准确提取关键信息。这种对复杂文档的精确解析,为后续的索引构建和检索提供了高质量、完整的数据基础,极大地提高了检索内容的准确性,确保用户在查询相关信息时,能够获取到最贴合需求的结果,避免因文档解析不精准而导致的信息遗漏或错误匹配。
二、丰富的文档索引生成功能提升检索精准度
一、页面排名(Pagerank)
RAGFlow 的文档生成索引支持页面排名功能。当存在多个知识库时,通过设置不同知识库的 Pagerank 得分,能够在检索时对不同知识库的内容进行优先级排序。例如,在一个大型企业中,存在核心业务知识库、通用知识知识库以及历史参考知识库。对于日常业务查询,核心业务知识库的信息往往更为关键和相关。通过为核心业务知识库设置较高的 Pagerank 得分,在检索过程中,来自该知识库的相关内容的相关性得分会相应提高,优先展示在检索结果中。相比之下,Dify 若缺乏类似精细的知识库优先级管理功能,在面对多知识库检索时,可能无法突出重点知识库的内容,导致用户需要在大量无关或低相关的信息中筛选,降低了检索效率和准确性。
二、自动关键词
RAGFlow 能够自动从文档中提取关键词。在解析文档时,系统会根据算法识别出出现频率较高且对语义贡献大的词汇作为关键词。例如,在一篇关于人工智能算法优化的技术文档中,“深度学习”“算法改进”“模型精度” 等词汇会被精准提取为关键词。这些关键词在检索时能够与用户的查询进行精准匹配,大大提升了检索相关内容的效率。当用户输入包含这些关键词的查询时,RAGFlow 能够迅速定位到相关文档块,而 Dify 如果在关键词提取方面不够智能和精准,可能会遗漏关键检索线索,导致检索结果不准确,无法满足用户需求。
三、自动问题
RAGFlow 还具备自动生成问题的功能。以法律文档为例,它可以将《反垄断法》第 17 条自动生成问题,如 “经营者滥用市场支配地位的具体情形有哪些?”。在检索时,当用户的查询与这些自动生成的问题语义相近或相关时,能够快速匹配到对应的文档内容,引导模型在问答时聚焦重点,提升答案的相关性和准确性。而 Dify 若缺乏这样的自动问题生成及关联检索机制,可能无法如此精准地理解用户查询意图并匹配相关内容,影响检索效果。
四、表格转 html、标签等功能
RAGFlow 支持将表格转换为 html 格式,并为文档添加标签。对于包含大量数据表格的文档,如市场调研报告中的销售数据表格,转换为 html 格式后,能够更好地保留表格结构和数据信息,方便后续索引和检索。同时,通过添加标签,如 “市场调研”“销售数据”“行业分析” 等,用户可以根据这些标签快速过滤和进行场景化检索。例如,当用户想要查询某一行业的销售数据相关信息时,只需通过 “行业分析” 和 “销售数据” 标签,就能快速定位到相关文档,减少噪声干扰,提高检索准确性。而 Dify 在表格处理和标签检索功能的集成度和便利性上若不及 RAGFlow,可能会使检索过程变得复杂,且难以精准定位到所需信息。
三、知识图谱生成助力深度知识关联检索
RAGFlow 支持文档生成知识图谱。知识图谱能够揭示文档中各种实体(如人物、组织、事件、概念等)之间的关系。例如,在一个企业的研发项目知识库中,知识图谱可以将不同项目文档中的研发人员、项目名称、技术创新点、应用领域等实体关联起来。当用户进行检索时,不仅能够获取与查询直接相关的文档内容,还能通过知识图谱的关联关系,获取到与之相关的其他间接信息。假设用户查询某一技术创新点,RAGFlow 可以通过知识图谱展示该技术创新点所在的项目、参与的研发人员以及该技术在其他相关领域的应用等信息,提供更全面、深入的知识检索结果。而 Dify 如果没有知识图谱生成功能,在知识关联检索方面会相对薄弱,用户难以获取到这种基于知识图谱的深度关联信息,限制了检索内容的丰富性和准确性。
四、先进的文档检索召回策略
RAGFlow 的文档检索召回支持使用召回增强 RAPTOR 策略。该策略结合了多种检索方式,如向量检索、全文检索和图召回等。向量检索能够捕获语义相似性,对于用户查询,它可以找到语义相近的文档内容。全文检索则确保了关键词匹配,当用户输入特定关键词时,能够准确找到包含这些关键词的文档。图召回基于文档内部关联扩展检索范围,通过知识图谱等关联关系,发现潜在相关的文档。例如,在一个学术知识库中,当用户查询某一研究主题时,向量检索可以找到在语义上探讨相似主题的学术论文,全文检索能定位到包含该主题关键词的论文,图召回则可以通过知识图谱中论文之间的引用关系、作者合作关系等,发现更多相关的研究成果。这种多路召回策略相互补充,大大提高了检索的召回率和准确性,相比之下,Dify 若没有如此全面和先进的召回策略,可能会遗漏一些潜在相关的文档,导致检索结果不完整、不准确。
五、灵活的元数据新增功能优化检索
RAGFlow 支持给文档新增元数据功能。元数据是关于数据的数据,比如文档的创建时间、作者、所属类别、适用场景等信息。以企业内部文档管理为例,对于一份新产品研发方案文档,可以添加 “新产品名称”“研发部门”“预计上市时间” 等元数据。在检索时,用户可以根据这些元数据进行精准筛选。当用户想要查询某一特定部门在某一时间段内的研发方案时,通过设置 “研发部门” 和 “创建时间” 等元数据条件,RAGFlow 能够快速准确地定位到相关文档,提高检索的精准度。而 Dify 如果在元数据支持方面不够灵活和强大,用户可能无法如此便捷地利用元数据进行精准检索,增加了获取准确信息的难度。
02
—
如何配置dify到ragflow的知识库
一、创建外部知识库
二、填写外部知识库关键信息
输入外部知识库的名称,重点是输入外部知识库的API,对于ragflow来说,API的 endpoint 为ragflow 的api地址
而 APIkey 则点开raglow 的apikey 按钮
复制按钮,粘贴到dify的API key 输入框中。
三、填写外部知识库具体的ID
这里具体的ID 是指,raglow具体建立的一个知识库的链接后面链接的id,这里随机打开一个知识库
然后查看链接对应的id
这一串就是知识库id,拷贝填入即可。
链接好后,这里会出现一个external的外部知识库。
然后后面配置工作流就可以引用这个工作流了。
大家可以去试一试。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓