大模型遇上知识图谱,擦出火花?这几种结合方式你一定要知道!

大模型自从去年底爆火出圈以后,很多人把大模型和知识图谱进行比较,甚至大量业内人士认为在大模型的发展下,知识图谱已经没有存在的必要了。那么真实情况,或者未来更有可能的一种情况是什么样的呢?

相信经过一段时间的使用后,大家会发现大模型确实功能非常强大,能够在诸多方面相比之前的方式,有了大幅的效率提升,但其仍然存在固有的问题难以解决,尤其是模型的幻觉在面临事实准确性问题时,始终无法给出完美的正确答案。这就是人们在问答大模型精准知识的时候,总感觉不那么靠谱,虽然90%以上的回答都是准确的,但因为一小部分的不准确,就会造成人们感知上的不靠谱。

而众所周知,知识图谱的特点是精准,在面对具体的知识问答时,能够给出非常准确的答案。但,知识图谱有个致命的缺陷,那就是构建知识图谱的复杂度非常高,要构建一个大规模的知识图谱,需要耗费大量的人力物力,成本非常高。

因此,是否存在一种可能,将两者进行结合,既可以解决大模型的知识幻觉问题,又可以解决知识图谱的构建复杂度问题呢?

事实上,这方面的研究在学术和工业界其实已经进行了诸多的工作。本文的目的是综述下两者结合的方式和方法,为未来的工作形成一些指引。

大模型与知识图谱优缺点

如上图所示,知识图谱的结构化知识、准确性、确定性、可解释性、领域专业知识、推理知识对于大模型的隐式知识、幻觉、不确定、黑河、缺乏领域和新知识,都会形成很好的补充。而大模型的通用知识、自然语言处理、泛化性对于知识图谱的不完整、缺乏语言理解、未知事实缺乏等又会所有帮助。

大模型与知识图谱结合的几种方式

通常而言,LLM与KG的结合有三种方式:

1.KG增强的LLM:也即将KG应用到LLM中,提升LLM的能力

2.LLM增强的KG:也即用LLM来赋能KG相关的各种任务,包括构建任务和应用任务

3.LLM与KG协同作用:两者相互协同进行应用

具体到每一种增强,又可以细分为如下的情况:

用KG增强LLM

用KG去增强LLM,一般有三种作用的方式,在预训练阶段、推理阶段和可解释性。

具体到预训练阶段,比较典型的方法又分为三种:将知识图谱整合进训练目标、将知识图谱整合进大模型的输入、将知识图谱整合进附加的融合模块,如下面三个图的结构分别表示:

这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

因为预训练的频率很低,很多新知识无法训练到模型里,因此在推理阶段,也可以用知识图谱来增强。在推理阶段,增强LLM的方式又有两种:

其中,第一种是将LLM和知识图谱进行动态融合,第二种则是比较常见的通过检索外部知识来增强LLM。

在提高LLM的解释性方面,可以发挥知识图谱结构化知识可以为推理结果提供优良可解释性的优势。这方面相关的研究集中在两个方面:用于语言模型探测的知识图谱,以及用于语言模型分析的知识图谱。

用LLM来增强知识图谱

下表详细罗列了用LLM来增强KG的方法:

用LLM来增强KG Embedding(KGE),传统的KGE是将每个实体和关系映射到低维的向量空间,这些嵌入包含了知识图谱语义和结构信息,可以用于问答、推理和推荐等任务。传统的做法,依靠知识图谱的结构信息来优化一个评分函数。但这种方法优于结构连接性限制,难以表示未曾见过的实体和长尾的关系。

使用LLM来编码和实体和关系的文本描述,可以丰富知识图谱的表征。以下为两种方式:将LLM用作KGE的文本编码器;联合文本与KGE的LLM。

用LLM来对KG进行补全的任务主要是推断给定知识图谱中缺失的事实。传统的做法关注的是KG的结构,但不会考虑广泛的文本信息。将LLM用于KGC的实现分为两类:将LLM作为编码器(PaE)和将LLM用作生成器(PaG)。

知识图谱的构建一般涉及到特定领域内知识结构化的过程,这里面包含实体发现以及实体间关系的发现。通过包含实体发现、共指消歧和关系提取等阶段。将LLM用于知识图谱构建各个阶段的框架如下:

还有直接用LLM进行知识蒸馏的方法:

KG-to-Text的目标是生成能准确描述知识图谱知识的文本,用于连接知识图谱和文本。但是收集大量知识图谱-文本平行数据难度很大,导致训练不充分,从而生成质量差。用LLM增强KG到文本的过程如下:

基于知识图谱的问答(KGQA)目标是根据知识图谱存储的结构化知识来寻找问题的答案。这里面的核心挑战是将检索的KG知识的推理优势扩展到问答任务上。用LLM来增强KGQA的方式包括:

LLM与KG的协同

将LLM和KG的优点融合,更好应对下游任务。将LLM和知识图谱联合起来可以形成知识表征和推理的强大模型。

总计一下,知识图谱的应用场景可简要概括为以下方向:

  1. 搜索引擎:增强搜索结果(如Google知识面板),直接展示实体关联信息。

  2. 智能问答:支持语音助手(如Siri)、客服机器人精准回答事实类问题。

  3. 推荐系统:电商、视频平台基于实体关系推荐商品或内容(如电影关联导演/演员)。

  4. 金融风控:分析企业股权、担保网络,识别欺诈或信贷风险。

  5. 医疗健康:辅助诊断(关联症状/疾病/药物)、药物研发(挖掘靶点关系)。

  6. 企业智能:构建客户/供应链知识库,优化决策或文档管理。

  7. 工业物联网:关联设备数据,实现故障预测或生产优化。

  8. 公共安全:分析犯罪团伙关系网络,追踪资金或人员关联。

  9. 教育:个性化学习推荐,构建学科知识点图谱。

  10. 科研:挖掘学术文献中的实体关系,加速学科交叉发现。

核心价值:将分散数据转化为可推理的网络结构,支撑语义理解与智能决策。

之前商界有位名人说过:“站在风口,猪都能吹上天”。这几年,AI大模型领域百家争鸣,百舸争流,明显是这个时代下一个风口!

那如何学习大模型&AI产品经理?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

如果你也想通过学大模型技术去帮助就业和转行,可以点扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
在这里插入图片描述

01.从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点
在这里插入图片描述

02.AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线

在这里插入图片描述

​​在这里插入图片描述

03.学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述

04.大模型面试题目详解

在这里插入图片描述

在这里插入图片描述

05.这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

在这里插入图片描述
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值