n8n与DeepSeek联手:打造AI新闻实战平台

如何使用 n8n 搭配最新 DeepSeek 打造新闻早报

✅ 本地部署 n8n,免费体验强大自动化能力 

✅ 使用多个新闻 API 获取 AI 相关新闻 🔍 

✅ 深度解析 DeepSeek V3,AI 翻译 & 整理新闻 🧠

✅ 低成本搭建 Telegram 自动推送机器人 🤖

环境准备

n8n 是一个工作流自动化平台,它为技术团队提供了代码般的灵活性和无代码般的速度。n8n 拥有 400 多个集成、原生 AI 功能以及公平代码许可证,能够构建强大的自动化流程,同时完全掌控个人的数据和部署。

node部署:

Node: https://nodejs.org/en/

立即使用npx尝试 n8n (需要Node.js ),直接运行以下命令即可

npx n8n

docker部署

前置条件,这里使用docker 部署,根据docker官方下载安装即可。

Docker 下载: https://www.docker.com/

下载镜像

sudo docker pull n8nio/n8n

image.png

创建n8n_data数据卷

这个命令用于创建一个名为 n8n_data 的 Docker 数据卷(volume)。

sudo docker volume create n8n_data

image.png

数据卷的作用

数据卷是 Docker 容器持久化存储数据的推荐方式,它独立于容器的生命周期,即使容器被删除,数据卷中的数据仍然保留。

默认储存位置

在 Linux 系统上,Docker 数据卷默认存储在 /var/lib/docker/volumes/ 目录下。具体到这个数据卷,它的路径会是:

/var/lib/docker/volumes/n8n_data/_data

如何查找数据卷的位置?

1、使用 docker volume inspect 命令:

sudo docker volume inspect n8n_data

输出中会显示 Mountpoint,这就是数据卷在主机上的实际路径。

image.png

2、直接查看 Docker 默认存储目录:

sudo ls /var/lib/docker/volumes/n8n_data/_data

3、列出所有数据卷

sudo docker volume ls

image.png

部署n8n

sudo docker run -it --rm --name n8n -p 5678:5678 -v n8n_data:/home/node/.n8n docker.n8n.io/n8nio/n8n

图片

安装启动完成后,按 “o”,即可进入浏览器,或者点击地址
http://localhost:5678/setup

图片

配置n8n

设置管理员账号,密码。

image.png

初始化完成后,简单填写一下表单

image.png

根据邮箱地址获取永久密钥

image.png

发送成功 license,点击usage and plan ,输入邮箱收到的license。

image.png

点击 enter activation key,输入邮箱接收到的key即可。

image.png

开始使用

配置完成之后,我们可以看到首页,一个是从头开始,一个是测试一个简单AI示例。这里是预先构建好的 AI Agent案例,我们可以先在这里测试它的功能。

image.png

这里的测试释义OpenAI Model 为例,我们需要先配置 OpenAi 的key,如下图,双击 openai model

image.png

选择凭证,创建一个新的凭证

image.png

输入自己的openai key,点击保存,这里大多数人没有 海外账户,无法支付,为了方便测试,大家可以改为一些中转地址,主要是 api key 和 base url 即可。

image.png

保存完成之后,它会自动测试是分开使用,后边直接使用就好了

image.png

image.png

创建工作流

点击从头开始创建工作流,这里支持 手动触发、app 触发、定时触发、webhook 调用等,由于本地部署没有公网所以webhook无法调用。

image.png

image.png

实践操作AI工作流

主要作用,每天早上8点 ,自动查询国外AI新闻经过AI翻译整理,发送到tg指定频道,或者微信群。

1、编辑定时触发节点

添加一个定时触发工作流,这里支持月天小时等多个维度设置周期,同时也支持 cron表达式,进行更加精确的设置。

image.png

如何设置本地时间呢?

image.png

Timezone,时区设置为上海。

image.png

双击节点,再次点击测试,看到时间已经为8点

image.png

2、 NewsAPI

https://newsapi.org/

完成注册,记录自己的API-Key

image.png


找到获取的get url地址,替换为自己的key,这个地址的apikey都是自己的。
https://newsapi.org/docs/endpoints/everything

图片

添加一个http 请求节点,GET请求,url为粘贴的那部分,点击测试,返回对应的新闻列表,认证不需要认证。

q后边对接的参数为查询的内容,改为ai。 https://newsapi.org/v2/everything?q=ai&apiKey=xxxx

图片

3、Gnews

个人用户使用 Gnews API,免费的为每天100次请求。

https://gnews.io/

图片

登录完成邮箱验证后,可以看到对应的key

图片

访问接口文档,https://gnews.io/docs/v4?python#authentication ,查看api地址,这里默认会带上key,将serach后边的q参数改为ai,因为回来的会有其他语言,我们这里只要英文相关的,lang=en
https://gnews.io/api/v4/search?q=ai&lang=en&apikey=xxxxx

图片

认证方式选择none即可,点击 Execute step,测试,正常返回新闻。

图片


 

调整工作流节点,让这两个http节点都是由同一个启动节点来触发

图片

4、数据格式处理

我们针对这两个http的请求,发现返回的都是json格式,但是内容的字段不太一致,我们统一处理一下,对数据进行统一,添加字段编辑节点

图片

图片

再次运行可以发现已经把这个字段json数据转成string类型的字符串了,同样的另外一个http节点执行相同的操作。

5、数据合并

添加merge 节点,将两个数据源合并

图片

将两个节点添加到merge 节点上

图片

点击执行,这里是合并后的数据

图片


 

6、新闻整合

6.1 整体说明

  1. 针对整理好的AI新闻进行翻译

  2. 对新闻内容进行标准化输出,eg:《标题+ 网址+消息摘要》

  3. 个性化AI提示词

6.2 提示词

AI新闻编辑指令手册
任务目标:筛选、翻译并整理全球AI技术动态,输出专业且易读的行业简报,10条左右

执行步骤

  1. 日期标注
    📅 开头统一格式:
    "早上好,今天是[YYYY年MM月DD日],以下是今日AI前沿速递:"

  2. 内容筛选

    • 从指定信源筛选15条纯AI技术/应用进展(排除融资、会议等非技术内容)

    • 优先级

      :模型突破>算法优化>新工具发布>行业应用案例

  3. 翻译规范

    • 中英混合:保留专业术语原貌(如Diffusion ModelsFew-shot Learning

    • 技术细节:用中文清晰解释(例:"通过稀疏注意力机制(sparse attention)降低计算开销")

  4. 排版格式
    🔹 条目模板
    ✅ 1. [核心突破] 标题突出技术亮点
    🔗 原文链接
    ▪️ 研究团队/公司:MIT、DeepMind等需标注
    ▪️ 关键数据:准确率/效率提升等量化指标加粗(例:降低30%训练成本
    ▪️ 应用前景:1句话说明潜在影响

    🔹 视觉优化

    • 每3条新闻后空1行

    • 关键术语用斜体标注

  5. 质量控制

    • 每条新闻需包含:技术名称+核心改进+应用价值

    • 禁用模糊表述(如"显著提升"→改为"提升22%推理速度")

示例输出


早上好,今天是2025年5月28日,以下是今日AI前沿速递:

✅ 1. Google推出VideoPoet:支持10秒视频的多模态生成
🔗 原文链接
▪️ 技术亮点:结合LLM扩散模型,支持文本/图像/音频→视频转换
▪️ 突破数据:生成速度比SOTA模型快1.8倍
▪️ 应用场景:短视频创作、广告素材自动化

✅ 2. MIT提出联邦学习新框架,隐私保护再升级
🔗 原文链接
▪️ 创新点:采用动态梯度加密技术,客户端数据无需上传
▪️ 测试结果:在医疗数据训练中保持92%准确率(传统方法为87%)
▪️ 意义:破解医疗AI数据孤岛难题


附:术语中英对照表(供参考)

  • 大语言模型 → LLM

  • 强化学习 → Reinforcement Learning

  • 生成对抗网络 → GAN

请严格按此模板执行,确保信息密度与可读性平衡,忽略其他信息,原文链接等为真实地址。

6.3 添加AI节点

点击加号,添加AI-Agent 选择自定义

图片

点击 express 输入提示词

图片

设定ai的角色,任务以及要求,这里大家可以自定义

图片

这个时候点击测试,发现会报错,这里我们需要添加一个模型,我们以deepseek为例

图片

添加deepseek模型

图片

创建AI服务

图片

deepseek的api-key配置地址为: https://platform.deepseek.com/api_keys

创建一个key

图片

在配置界面输入对应的key 保存,它会自动测试ai服务的联通性。

image.png

模型配置,这里我们使用 deepseek-chat即可。

图片


 

6.4 测试整合输出

设置完成AI模型之后,我们点击测试,查看一下我们的输出效果,可以看到 output 就是整理好的新闻列表,看着效果还不错。

图片

7、消息推送

7.1 配置消息频道

这里我们使用电报为例,也可以使用webhook 推送到钉钉、飞书、公众号等平台, 在telegram的消息对话框搜索 botfather

图片

打开机器人,点击开始

图片

点击 new_bot 创建一个带机器人的频道

图片

首先输入频道的名字,接着输入 机器人的名字,这个名字要以_bot 结尾。

图片

7.2 配置发送工作流

点击加号,选择添加app ,选择 telegram,搜索send ,选择发送纯文本消息。

image.png

节点添加中,我们创建一个新的信任凭证,这个就是上边的token

image.png

输入我们创建的token ,保存之后会自动发起测试,如右下角说明无误

image.png

7.3 配置chat id

chat id 的作用就是,指定我们发消息到哪个频道,回到 telegram 中搜索get_id_bot,点击开始使用

图片

在对话框中输入: /my_id

image.png

就可以看到你的chat id 是多少,复制这个id

图片

配置对应chat id 和 消息内容

图片

7.4 完成工作流配置

点击测试,在A2Data 频道中可以看到 效果还是不错的,至此我们的AI 新闻早报就完成了,测试对应的原文链接也是可以直接访问的。

图片

返回工作流主页,记得打开这个定时开关

图片

完整工作流如下,你学废了吗?

图片

 

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### n8nDeepSeek的集成 #### 集成概述 n8n是一个强大的工作流自动化工具,允许用户创建复杂的工作流来连接不同服务。通过将n8nDeepSeek集成,可以实现更高效的数据检索和处理流程。这种组合能够显著提升工作效率,尤其是在涉及大量非结构化数据的情况下[^1]。 #### 实现方式 为了使n8n能DeepSeek协同工作,通常需要开发特定节点(node),该节点作为两者之间的桥梁。此节点应具备向DeepSeek发送请求的能力,并解析返回的结果用于后续操作。下面展示了一个简单的Python脚本片段,可用于构建这样的自定义节点: ```python import requests def query_deepseek(document_id): url = f"https://api.deepseek.com/v1/documents/{document_id}/retrieve" headers = { 'Authorization': 'Bearer YOUR_ACCESS_TOKEN', 'Content-Type': 'application/json' } response = requests.get(url, headers=headers) if response.status_code == 200: return response.json() else: raise Exception(f"Error retrieving document: {response.text}") ``` 这段代码展示了如何利用`requests`库发起HTTP GET请求到DeepSeek API端点,获取指定ID的文档详情。实际应用中可能还需要考虑错误处理机制以及身份验证逻辑等细节问题。 #### 应用场景举例 当企业内部存在海量历史档案资料时,借助于上述提到的人工智能代理技术,配合n8n设计出一套完整的自动化方案就显得尤为重要了。比如,在接收到新客户咨询邮件后触发相应事件,自动调用DeepSeek接口查询匹配度最高的过往案例供客服人员参考;或是定期扫描某类文件夹内的新增PDF文件,经过OCR识别转换为文本格式后再存入数据库以便日后快速定位查阅等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值