Python 关于运行时间、调用次数及内存使用的性能测试_nt(1)

如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

>>> from time import time,monotonic,perf_counter
>>> time()
1633249386.5061808
>>> monotonic()
4594.25
>>> perf_counter()
613.323613
>>> 

区别二:

处理进程、线程时间的不受sleep影响

>>> from time import time,sleep,process_time,thread_time
>>> def fib(n):
	if n<3:return 1
	return fib(n-1)+fib(n-2)

>>> t = time(); fib(30); time()-t
832040
0.432178258895874
>>> t = thread_time(); fib(30); thread_time()-t
832040
0.421875
>>> t = time(); sleep(1); fib(30); sleep(1); time()-t
832040
2.463411569595337
>>> t = process_time(); sleep(1); fib(30); sleep(1); process_time()-t
832040
0.421875
>>> t = thread_time(); sleep(1); fib(30); sleep(1); thread_time()-t
832040
0.4375
>>> 

二、 Module timeit

比较适合测试小段代码:

>>> from timeit import timeit
>>> timeit(stmt='a=10;b=10;sum=a+b')
0.11455389999997578
>>> timeit(stmt='a=10;b=10;sum=a+b',number=10000)
0.0013638000000355532
>>> 

程序中的使用如下:

import timeit

def fib(n):
    if n<3:return 1
    return fib(n-1)+fib(n-2)
    
if __name__ == '__main__':

    tm = timeit.Timer('fib(40)', 'from __main__ import fib')
    print(tm.timeit(1))


注意: .timeit() 的参数number默认值为1000000,上例中tm.timeit()不用参数的话停不了

这个模块还能在DOS命令窗口下执行:

D:>python -m timeit -n 30 -s “import random” “[random.random() for i in range(100000)]”
30 loops, best of 5: 23.1 msec per loop

三、 Module cProfile

这个模块除了给出调用时间,还报告函数调用次数:

>>> from cProfile import Profile
>>> f = lambda n:1 if n<3 else f(n-1)+f(n-2)
>>> cp = Profile()
>>> cp.enable(); n = f(30); cp.disable()
>>> cp.print_stats()
         1664081 function calls (3 primitive calls) in 1.007 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
1664079/1    1.007    0.000    1.007    1.007 <pyshell#70>:1(<lambda>)
        1    0.000    0.000    0.000    0.000 rpc.py:614(displayhook)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}


>>> 2*f(30)-1
1664079
>>> 

为什么f(30)的调用次数ncalls = 2*f(30)-1,因为我用傻办法验证过所以我知道。

这个模块还能在DOS命令窗口下执行:

D:>python -m cProfile -s cumulative test1.py
         350 function calls (343 primitive calls) in 0.002 seconds

Ordered by: cumulative time

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
      3/1    0.000    0.000    0.002    0.002 {built-in method builtins.exec}
        1    0.000    0.000    0.002    0.002 test1.py:1()
      2/1    0.000    0.000    0.002    0.002 <frozen importlib._bootstrap>:986(_find_and_load)
      2/1    0.000    0.000    0.002    0.002 <frozen importlib._bootstrap>:956(_find_and_load_unlocked)
      2/1    0.000    0.000    0.001    0.001 <frozen importlib._bootstrap>:650(_load_unlocked)
        2    0.000    0.000    0.001    0.000 <frozen importlib._bootstrap>:890(_find_spec)
        1    0.000    0.000    0.001    0.001 <frozen importlib._bootstrap_external>:777(exec_module)
        1    0.000    0.000    0.001    0.001 <frozen importlib._bootstrap_external>:1334(find_spec)
        1    0.000    0.000    0.001    0.001 <frozen importlib._bootstrap_external>:1302(_get_spec)
        4    0.000    0.000    0.001    0.000 <frozen importlib._bootstrap_external>:1431(find_spec)
        6    0.000    0.000    0.001    0.000 <frozen importlib._bootstrap_external>:80(_path_stat)
        6    0.001    0.000    0.001    0.000 {built-in method nt.stat}

…省略很多行…

四、 Module line_profiler

运行时间逐行分析报告,测试文件test1.py源码如下:

@profile
def fib(n):
    if n<3:return 1
    return fib(n-1)+fib(n-2)
    
if __name__ == '__main__':

    print(fib(30))

不用import导入,只在测试函数前加上装饰器 @profile ,测试在DOS窗口进行:

D:>kernprof -l -v test1.py
832040
Wrote profile results to test1.py.lprof
Timer unit: 1e-06 s

Total time: 3.07291 s
File: test1.py
Function: fib at line 1

Line #      Hits         Time  Per Hit   % Time  Line Contents

1                                           @profile
     2                                           def fib(n):
     3   1664079    1341610.0      0.8     43.7      if n<3:return 1
     4    832039    1731304.5      2.1     56.3      return fib(n-1)+fib(n-2)

D:>

五、Module memory_profiler

内存使用逐行分析报告,使用方法基本同上还是测试test1.py,命令如下:

D:>python -m memory_profiler test1.py
832040
Filename: test1.py

Line #    Mem usage    Increment  Occurences   Line Contents

1   29.203 MiB -139766.219 MiB     1664079   @profile
     2                                         def fib(n):
     3   29.203 MiB -139795.418 MiB     1664079       if n<3:return 1
     4   29.203 MiB -69899.141 MiB      832039       return fib(n-1)+fib(n-2)

六、Module guppy

查看对象占用的堆内存大小

此模块安装时碰到:

error: Microsoft Visual C++ 14.0 is required. Get it with “Build Tools for Visual Studio”: https://visualstudio.microsoft.com/downloads/

需要VC++14,所以没装没能亲测,大致用法:

    from guppy import hpy
    import gc

    hp = hpy()
    ast = parse_file('filename')
    gc.collect()
    h = hp.heap()
    print(h)

以上涉及的所有模块,都可以在dos窗口下验证有无或者在线安装:

D:>pip show xxModule
WARNING: Package(s) not found: xxModule

D:>pip install xxModule

如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值