如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
>>> from time import time,monotonic,perf_counter
>>> time()
1633249386.5061808
>>> monotonic()
4594.25
>>> perf_counter()
613.323613
>>>
区别二:
处理进程、线程时间的不受sleep影响
>>> from time import time,sleep,process_time,thread_time
>>> def fib(n):
if n<3:return 1
return fib(n-1)+fib(n-2)
>>> t = time(); fib(30); time()-t
832040
0.432178258895874
>>> t = thread_time(); fib(30); thread_time()-t
832040
0.421875
>>> t = time(); sleep(1); fib(30); sleep(1); time()-t
832040
2.463411569595337
>>> t = process_time(); sleep(1); fib(30); sleep(1); process_time()-t
832040
0.421875
>>> t = thread_time(); sleep(1); fib(30); sleep(1); thread_time()-t
832040
0.4375
>>>
二、 Module timeit
比较适合测试小段代码:
>>> from timeit import timeit
>>> timeit(stmt='a=10;b=10;sum=a+b')
0.11455389999997578
>>> timeit(stmt='a=10;b=10;sum=a+b',number=10000)
0.0013638000000355532
>>>
程序中的使用如下:
import timeit
def fib(n):
if n<3:return 1
return fib(n-1)+fib(n-2)
if __name__ == '__main__':
tm = timeit.Timer('fib(40)', 'from __main__ import fib')
print(tm.timeit(1))
注意: .timeit() 的参数number默认值为1000000,上例中tm.timeit()不用参数的话停不了
这个模块还能在DOS命令窗口下执行:
D:>python -m timeit -n 30 -s “import random” “[random.random() for i in range(100000)]”
30 loops, best of 5: 23.1 msec per loop
三、 Module cProfile
这个模块除了给出调用时间,还报告函数调用次数:
>>> from cProfile import Profile
>>> f = lambda n:1 if n<3 else f(n-1)+f(n-2)
>>> cp = Profile()
>>> cp.enable(); n = f(30); cp.disable()
>>> cp.print_stats()
1664081 function calls (3 primitive calls) in 1.007 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1664079/1 1.007 0.000 1.007 1.007 <pyshell#70>:1(<lambda>)
1 0.000 0.000 0.000 0.000 rpc.py:614(displayhook)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
>>> 2*f(30)-1
1664079
>>>
为什么f(30)的调用次数ncalls = 2*f(30)-1,因为我用傻办法验证过所以我知道。
这个模块还能在DOS命令窗口下执行:
D:>python -m cProfile -s cumulative test1.py
350 function calls (343 primitive calls) in 0.002 secondsOrdered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
3/1 0.000 0.000 0.002 0.002 {built-in method builtins.exec}
1 0.000 0.000 0.002 0.002 test1.py:1()
2/1 0.000 0.000 0.002 0.002 <frozen importlib._bootstrap>:986(_find_and_load)
2/1 0.000 0.000 0.002 0.002 <frozen importlib._bootstrap>:956(_find_and_load_unlocked)
2/1 0.000 0.000 0.001 0.001 <frozen importlib._bootstrap>:650(_load_unlocked)
2 0.000 0.000 0.001 0.000 <frozen importlib._bootstrap>:890(_find_spec)
1 0.000 0.000 0.001 0.001 <frozen importlib._bootstrap_external>:777(exec_module)
1 0.000 0.000 0.001 0.001 <frozen importlib._bootstrap_external>:1334(find_spec)
1 0.000 0.000 0.001 0.001 <frozen importlib._bootstrap_external>:1302(_get_spec)
4 0.000 0.000 0.001 0.000 <frozen importlib._bootstrap_external>:1431(find_spec)
6 0.000 0.000 0.001 0.000 <frozen importlib._bootstrap_external>:80(_path_stat)
6 0.001 0.000 0.001 0.000 {built-in method nt.stat}…省略很多行…
四、 Module line_profiler
运行时间逐行分析报告,测试文件test1.py源码如下:
@profile
def fib(n):
if n<3:return 1
return fib(n-1)+fib(n-2)
if __name__ == '__main__':
print(fib(30))
不用import导入,只在测试函数前加上装饰器 @profile ,测试在DOS窗口进行:
D:>kernprof -l -v test1.py
832040
Wrote profile results to test1.py.lprof
Timer unit: 1e-06 sTotal time: 3.07291 s
File: test1.py
Function: fib at line 1Line # Hits Time Per Hit % Time Line Contents
1 @profile
2 def fib(n):
3 1664079 1341610.0 0.8 43.7 if n<3:return 1
4 832039 1731304.5 2.1 56.3 return fib(n-1)+fib(n-2)D:>
五、Module memory_profiler
内存使用逐行分析报告,使用方法基本同上还是测试test1.py,命令如下:
D:>python -m memory_profiler test1.py
832040
Filename: test1.pyLine # Mem usage Increment Occurences Line Contents
1 29.203 MiB -139766.219 MiB 1664079 @profile
2 def fib(n):
3 29.203 MiB -139795.418 MiB 1664079 if n<3:return 1
4 29.203 MiB -69899.141 MiB 832039 return fib(n-1)+fib(n-2)
六、Module guppy
查看对象占用的堆内存大小
此模块安装时碰到:
error: Microsoft Visual C++ 14.0 is required. Get it with “Build Tools for Visual Studio”: https://visualstudio.microsoft.com/downloads/
需要VC++14,所以没装没能亲测,大致用法:
from guppy import hpy import gc hp = hpy() ast = parse_file('filename') gc.collect() h = hp.heap() print(h)
以上涉及的所有模块,都可以在dos窗口下验证有无或者在线安装:
D:>pip show xxModule
WARNING: Package(s) not found: xxModuleD:>pip install xxModule
如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!