既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
下载预编译 llama.cpp 软件
到 https://github.com/ggerganov/llama.cpp/releases ,下载 cuda 12 版本。下载完毕后,解压到一个文件夹里。我这里用的文件夹名字为 llama-bin-win-cuba-x64
,下面也都用这个路径。
创建 prompt 文件
把 https://raw.githubusercontent.com/ggerganov/llama.cpp/master/prompts/chat-with-bob.txt 下载到 llama-bin-win-cuba-x64
根目录
下载量化模型
结合硬件配置,我用的是 13b 的模型 llama-2-13b-chat.Q5_K_M
。大家可以参考 https://pa.ci/248.html 选择合适自己的。
这里要注意,目前是无法直接访问 huggingface.co 网站的,我用的是 https://hf-mirror.com/ 镜像站点来解决。下载上面这个模型不需要 token 验证,所以可以直接打开 https://hf-mirror.com/TheBloke/Llama-2-13B-chat-GGUF/blob/main/llama-2-13b-chat.Q5_K_M.gguf ,点击 download 按钮直接下载
运行模型
在终端中打开 llama-bin-win-cuba-x64
目录,运行如下命令(模型 gguf 文件名,记得替换成自己用的)
.\main.exe -m .\llama-2-13b-chat.Q5_K_M.gguf -n -1 --repeat_penalty 1.0 --color -i -r “User:” -f .\chat-with-bob.txt --n-gpu-layers 1
注意,最后的 --n-gpu-layers 1
表示第一层让 gpu 计算,剩下给 cpu。运行后,会出现类似下面内容:
其中 llm_load_tensors: offloaded 1/41 layers to GPU
,说明一共有 41 层,gpu 运行第 1 层。后续想全部给 gpu 运行,把命令里的 --n-gpu-layers 1
改为 --n-gpu-layers 41
即可。
推荐大家可以尽量用 gpu 加速,运行速度比 cpu 快不少。
运行效果:
总结
初步在本地跑了起来,完成了第一步。后面继续折腾,把它变成 web 服务,上层再做更多事情。
行动吧,在路上总比一直观望的要好,未来的你肯定会感谢现在拼搏的自己!如果想学习提升找不到资料,没人答疑解惑时,请及时加入群: 786229024,里面有各种测试开发资料和技术可以一起交流哦。
最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取**【保证100%免费】
**
软件测试面试文档
我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
纲路线、讲解视频,并且后续会持续更新**