(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
垃圾回收
我们作为Python程序员也是非常幸福的,我们日常不太需要关注内存管理和垃圾回收,是因为CPython的解释器有一套自己的机制来处理。那么,在Python的世界里为什么不太需要关注垃圾回收呢?
这是因为Python自己的解释器自动做了垃圾回收相应的处理,在绝大部分场景下是不需要人为的干涉的。另外,大家对于Python的共识就是开发效率。因为其是一个胶水语言,在很多场景下高性能以及内存问题其实并不凸显,而且现在服务器资源很便宜而人力资源很贵的情况下。
使用Python做Web开发,工作很多年也不太会遇到内存管理和垃圾回收的。在Web应用几乎都是使用多进程模型的,一则是会有定期超时重启的机制,二是每次上线的操作也会进程的重启。所以不会有某个进程长时间的驻留,使其占用很多内存,导致内存泄漏。所以,GC的缺陷基本不太会对Web开发产生很大的影响。且CPython也足够完善,基本不太会出现内存泄漏这样的问题。大部分场景下,都是因为开发者错误的使用或者是误判导致内存占用不正常。
引用计数
Python的垃圾回收是建立在引用技术上的,所以理解引用计数也是非常重要的。而引用计数的原理就是,当一个对象的引用被创建或者复制时,对象的引用计数加1;当一个对象的引用被销毁时,对象的引用计数减1;当对象的引用计数减少为0时,就意味着对象已经没有被任何人使用了,可以将其所占用的内存立刻释放了。
引用计数这种机制的特点是,有比较好的实时性,但是引用计数会有一个循环引用的问题。比如说A引用了B,而B又引用了A,导致每一个对象的引用计数都不为0,那么A和B占用的内存资源永远都不会被回收。所以,就需要一些回收算法来解决这个问题,而Python就是使用了标记清除和分代回收机制。
标记清除
上面我们说了,标记-清除就是为解决循环引用的问题。最理想的情况下,比如说有两个对象A和B,其中A有一个B的引用,就会将B的引用计数减1。然后顺着引用达到B,因为B有一个引用了A,同样将A的引用计数减少1。这样,就将引用计数中循环引用的环给摘除。
但是,还会存在另外一个问题。假设对象A,它有一个对象C的引用,而C并没有引用A。如果将C的引用计数减少1,而最后A没有被回收,显然我们错误将C的引用计数减少了1。这样,将导致在未来的某个时段出现了一个对C的悬空引用。这就要求我们在C没有被删除的情况下,复用C的引用计数。如果采用这样方案的话,那么维护这个引用计数的复杂度就会成倍的增加。而这个标记清除采用了更好的做法来解决这个问题。
标记清除采用了更好的做法,它并不改动真实的引用计数,而是将集合中对象的引用计数复制一份副本,改动该对象引用的副本。对于副本做任何的改动,都不会影响到对象生命周期的维护。
分代回收
分代回收是在面试中,常常会被问到的一个问题。分代回收的核心思想就是,对象存活的时间越长,越不可能是垃圾,应该更少的去回收。且Python将所有的对象分为0、1、2三代,所有的新建对象都是0代对象。但是,当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象,即1代或者2代了。
分代回收的预值,可以使用如下代码进行查看。通常,返回一个元组且包含三个数值,默认值为(700, 10, 10)。其中第一个数值700表示,从上一个垃圾回收到现在分配内存的数目减去释放内存的数目。如果这个数值到了700,则会对第一代的垃圾对象进行回收,并且给第二个数值加1。当第二个数值增加到10的时候,就会对第一代和第二代的垃圾对象进行回收,并且给第三个数值加1。当第三个数值增加到10的时候,则三代都会被回收,然后初始化为(0, 0, 0)并继续开始计数。
需要注意的是,如果没有十分必要的场景,这个分代回收的默认值通常是不需要我们人为的改动的。
In [1]: import gc
In [2]: gc.get_threshold()
Out[2]: (700, 10, 10)
强制回收
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!