题目需求描述
已知两个Excel表格:学生基本信息表、期末考试成绩表分别用于存放学生的基本信息(包括姓名、性别、班级)和学生的期末成绩(包括姓名、语文、数学、英语、总分),部分数据如下图所示(完整数据见学生基本信息表****.xls、期末考试成绩表**.xls**),完成以下操作。
(1)编写程序读取两张表中的数据,并将其根据姓名进行合并,然后将合并后的数据按照总分从高到低进行排序,总分相同时,根据英语成绩从高到低排序,并将结果存放在**学生期末考试成绩排名表****.xls**中,最终表中的部分数据如下。
(2)编写程序分别用饼状图绘制出语文、数学、英语课程优秀(分数**>=90**)、良好(90>分数>=80)、中等(80>分数>=70)、及格(70>分数>=60)、不及格(分数**<60**)的比例。最终效果如图所示,要求三个图放在一个大图中,大图的标题为**学生各科成绩分布图**,每个图都有子标题,例如语文成绩分布,所有比例*保留1位小数点**,最终的图保存为**饼状图.png***。
(3)编写程序分别用条形图绘制出语文、数学、英语课程的最低分、最高分以及平均分。最终效果图如图所示,要求图中显示**图例**、标题,条形图上方显示相应数字,最终的图保存为条形****.png**。
代码参考
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
def get_datas(df, col):
level_1 = len(df[df[col] >= 90])
level_2 = len(df[(df[col] < 90) & (df[col] >= 80)])
level_3 = len(df[(df[col] < 80) & (df[col] >= 70)])
level_4 = len(df[(df[col] < 70) & (df[col] >= 60)])
level_5 = len(df[df[col] < 60])
return level_1, level_2, level_3, level_4, level_5
# 第一小题
d_1 = pd.read_excel("学生基本信息表.xls", skiprows=1)
d_2 = pd.read_excel("期末考试成绩表.xls", skiprows=1)
d_3 = pd.merge(d_1, d_2)
d_3 = d_3.sort_values(by=["总分", "英语"], ascending=False)
d_3.to_excel("学生期末考试成绩排名表.xls")
# 第二小题
results = []
titles = ["语文", "数学", "英语"]
plt.rcParams["font.family"] = "FangSong" # 设置字体
labels = ["优秀", "良好", "中等", "及格", "不及格"]
for title in titles:
results.append(get_datas(d_3, title))
plt.figure(figsize=(12, 5)) # 创建一个新图
plt.suptitle("学生各科成绩分布图")
for index, data in enumerate(results):
print(data)
plt.subplot(1, 3, index + 1)
plt.title(titles[index] + "成绩分布")
plt.pie(data, labels=labels, autopct='%.1f%%', shadow=True, labeldistance=1.2,
explode=(0.1, 0, 0, 0, 0), colors=['m', 'c', 'y', 'r', 'g'])
plt.savefig("饼状图")
# 第三小题
plt.figure() # 创建一个新图
min_datas =[np.min(d_3["语文"]), np.min(d_3["数学"]), np.min(d_3["英语"])]
mean_datas =[np.mean(d_3["语文"]), np.mean(d_3["数学"]), np.mean(d_3["英语"])]
max_datas =[np.max(d_3["语文"]), np.max(d_3["数学"]), np.max(d_3["英语"])]
kemu_datas = [min_datas, mean_datas, max_datas]
legends = ["最低分", "平均分", "最高分"]
x = range(len(titles))
plt.title("各科成绩统计信息")
for index, data in enumerate(kemu_datas):
plt.bar([i + 0.3 * index for i in x], height=data, width=0.3, label=legends[index])
for j, num in enumerate(data):
plt.text(0.3 * index + j, num + 1, "{:.1f}".format(num), ha="center", va="bottom", color="r")
plt.xticks([i + 0.3 for i in x], titles) # 绘制底部标签
plt.legend()
plt.savefig("条形图")
plt.show()
关于Python技术储备
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!