python代码实现-常用的启发式算法(不是最优但是合理)

启发式算法是一类基于直观或经验构造的算法,旨在在可接受的花费下为组合优化问题提供可行解。这些算法通常不能保证找到最优解,但可以在合理的时间内得到不错的答案。启发式算法的主要应用领域包括:

  1. 模拟退火算法(SA):模拟退火算法借鉴了固体的退火原理,通过随机生成临域解并计算解的优劣,以概率方式接受新解,并在迭代过程中逐步降低温度,最终找到问题的近似解。
  2. 遗传算法(GA):遗传算法模拟生物进化过程中的遗传和变异过程,将问题的解编码为染色体(个体),并在群体中进行选择、交叉和变异等操作,通过迭代进化来逐渐找到最优解。
  3. 蚁群算法(ACO):蚁群算法受到自然界中真实的蚁群集体行为研究成果的启发,通过模拟蚁群的觅食行为来解决组合优化问题。
  4. 粒子群算法(PSO):粒子群算法是一种基于群体智能的优化算法,通过模拟鸟群觅食行为来解决组合优化问题。
  5. 禁忌搜索算法(TS):禁忌搜索算法是一种基于启发式搜索的优化算法,通过引入禁忌表来避免搜索过程中的重复操作,从而提高搜索效率。

启发式算法的代码示例:

  1. 模拟退火算法(SA)
import random
import math

def sa_optimize(func, x0, T_max, T_min, cooling_rate):
    x_best = x0
    f_best = func(x0)
    T = T_max

    while T > T_min:
        x_new = x_best + random.uniform(-1, 1)
        f_new = func(x_new)

        if f_new < f_best:
            x_best = x_new
            f_best = f_new
        else:
            p = math.exp(-(f_new - f_best) / T)
            if random.random() < p:
                x_best = x_new
                f_best = f_new

        T *= cooling_rate

    return x_best, f_best

# 示例函数
def func(x):
    return x**2

# 初始值
x0 = 10

# 模拟退火参数
T_max = 100
T_min = 1e-6
cooling_rate = 0.9

x_best, f_best = sa_optimize(func, x0, T_max, T_min, cooling_rate)
print("x_best:", x_best)
print("f_best:", f_best)
  1. 遗传算法(GA)
import random

def ga_optimize(func, n_pop, n_gen, p_crossover, p_mutation):
    def create_individual():
        return [random.uniform(-10, 10) for _ in range(1)]

    def crossover(parent1, parent2):
        child1 = [parent1[0], parent2[1]]
        child2 = [parent2[0], parent1[1]]
        return child1, child2

    def mutate(individual):
        mutated = individual.copy()
        for i in range(len(mutated)):
            if random.random() < p_mutation:
                mutated[i] = random.uniform(-10, 10)
        return mutated

    population = [create_individual() for _ in range(n_pop)]
    best_individual = min(population, key=func)

    for _ in 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王毕业啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值