comfyui效率节点,新手必备!

前言

学习stable diffusion的顺序

推荐先学webui

再学comfyui

一开始学习comfyui的新手容易被节点绕晕

今天这个效率节点可以解决这个问题

只要你有webui的基础

那就可以无脑上手了

加载我分享的这个工作文件

加载后的界面如下

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~在这里插入图片描述

下面来简单介绍一下这个工作流

这个工作流的核心是下图左侧这个效率加载器

延续了webui用户的操作习惯

把大模型,vae,lora,提示词,出图尺寸,生成数量全部集成到了一个模块里面,不再需要手动一个一个的新建节点进行链接,不需要再看把人绕晕的线。

右侧是可以加载多个lora模型和多个controlnet的节点

lora堆你可以最多同时选择3个lora,可以对lora进行开关和权重的控制

controlnet堆你可以最多同时使用3个controlnet进行控制

在这里插入图片描述

我设置了三个常用的controlnet预处理器,而且都有处理预览

当然你也可以自己自由更换和停用这三个预处理

右侧是k采样器效率节点

依然是延续了webui的操作习惯,集合了随机种子数控制,迭代步数,提示词引导步数,采样方法等参数

最后就是保存图像的功能,没什么好说。

就是这么简单,通过这个效率节点,你可能一周才上手的comfyu,可以在一天之内快速掌握。

最后推荐几个高效方法

  1. 使用秋叶comfyui整合包可以无脑上手使用comfyui

  2. comfyui和webui可以共享模型,不需要额外再复制一份模型

  3. 记得去更新你的插件节点,不然打开全是报错

本期下载【 https://www.wugesc.cn/16673.html

免责声明:这些资源皆来源于互联网公开分享的内容,仅用于个人学习使用,请禁止用于商业用途和倒卖,如真正需要,请支持版权方。

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

ComfyUI 是一个基于节点的工作流式用户界面,专门用于与 Stable DiffusionAI 绘图模型进行交互。它以高度可定制化和流程可视化著称,适合初学者及高级用户深入使用[^1]。 ### ComfyUI 的入门指南 #### 1. **为什么选择 ComfyUI?** ComfyUI 提供了一个图形化的节点编辑器,使用户能够通过连接不同的功能模块来构建复杂的图像生成流程。相比传统的命令行操作,其优势在于: - 可视化工作流设计,便于理解与调试。 - 支持插件扩展,满足个性化需求。 - 社区活跃,资源丰富,易于学习和获取帮助[^1]。 #### 2. **下载与安装** 在开始使用 ComfyUI 之前,需要先完成以下步骤: - **下载 ComfyUI**:从官方 GitHub 仓库克隆最新版本的代码。 - **安装依赖**:确保系统中已安装 Python 和 PyTorch,同时推荐使用 GPU 加速推理过程。 - **运行环境配置**:根据操作系统设置虚拟环境,并安装所需的库文件[^1]。 #### 3. **基本工作流与节点逻辑** ComfyUI 的核心是其基于节点的工作流系统。每个节点代表一个特定的功能,例如加载模型、生成图像或应用遮罩效果。常见的节点包括: - `Load Checkpoint`:加载基础模型。 - `CLIP Text Encode`:将文本提示编码为模型可理解的形式。 - `KSampler`:执行采样过程以生成图像。 - `Image Scale` 和 `Image Crop`:调整图像尺寸或裁剪区域。 - `Save Image`:保存最终输出结果[^1]。 #### 4. **Lora 模型的安装与使用** Lora(Low-Rank Adaptation)是一种轻量级模型,用于微调主模型以实现特定风格或内容的增强。安装 Lora 模型的路径通常位于 `models/Lora` 文件夹下。在 ComfyUI 中,可以通过以下方式使用 Lora: - 使用 `Load Lora` 节点加载指定的 Lora 权重。 - 将其连接到 `CLIP Text Encode` 或 `UNet` 节点,以影响文本编码或图像生成过程[^3]。 #### 5. **常用插件推荐** 为了提升用户体验,ComfyUI 支持多种实用插件,以下是几款新手必备的插件: - **ComfyUI Workspace Manager (Comfyspace)**:管理多个工作空间,方便切换不同项目。 - **AIGODLIKE-COMFYUI-TRANSLATION**:提供中文界面支持。 - **ComfyUI-Crystools**:监控系统资源使用情况。 - **ComfyUI-WD14-Tagger**:自动提取图像中的关键词标签。 - **Refiner 模型细化图像**:对生成的图像进行细节优化[^4]。 #### 6. **实践案例:搭建 SDXL 工作流** SDXL(Stable Diffusion XL)是一个更高分辨率的图像生成模型。在 ComfyUI 中搭建 SDXL 工作流的步骤如下: - 加载 SDXL 基础模型。 - 设置两个独立的文本编码器(分别处理正向和负向提示词)。 - 配置 KSampler 参数以控制生成质量。 - 使用 `VAE Decode` 节点将潜变量解码为图像。 - 最后保存图像并查看结果[^1]。 --- ```python # 示例:ComfyUI 工作流的基本结构(伪代码) class ComfyUIWorkflow: def __init__(self): self.nodes = [] def add_node(self, node_type, parameters): self.nodes.append({"type": node_type, "params": parameters}) def execute(self): for node in self.nodes: print(f"Executing {node['type']} with params {node['params']}") # 创建一个简单的工作流 workflow = ComfyUIWorkflow() workflow.add_node("Load Checkpoint", {"model_name": "realisticVision"}) workflow.add_node("CLIP Text Encode", {"text": "a beautiful landscape"}) workflow.add_node("KSampler", {"steps": 20, "cfg": 8.0}) workflow.add_node("Save Image", {"output_path": "./output.png"}) workflow.execute() ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值