引言:
想要生成高质量的AI图片,参数设置是关键!本节课,将带你深入解析Stable Diffusion的核心参数,从原理到实操,让你轻松掌握高效生成的秘诀!🚀
一、Stable Diffusion生成图片的原理
1. 学习过程:加噪点
Stable Diffusion通过不断给图片添加噪点来学习图片的特征。这个过程就像给一张清晰的图片逐渐加上杂乱的像素,直到完全变成噪点图。
需要stable diffusion整合包以及提示词插件,可以扫描下方,免费获取
2. 生成过程:去噪点
生成图片时,Stable Diffusion从一张完全的噪点图开始,逐步去除噪点,直到生成清晰的图片。这个过程与学习过程相反,通过逐步去除噪点还原图片。
二、核心参数详解
1. 迭代步数
-
定义:从噪点图到成品图所需的去噪步骤数。
-
影响:步数越多,去噪越精细,生成图片质量越高,但耗时更长。
-
推荐值:30-40步(平衡质量和效率)。
案例演示:a wolf,running in the farm. in winter.
-
步数1-10:图片噪点明显,细节不足。
-
步数20-30:图片逐渐清晰,细节丰富。
-
步数40+:细节几乎无变化,但耗时增加。
2. 采样方法
、
-
定义:决定每一步去噪的计算方法。
-
推荐方法:
-
-
Euler a:快速且稳定,适合大多数场景。
-
-
-
DPM++ 2M:高质量生成,适合高要求项目。
-
-
-
UniPC:极高质量,但耗时较长。
-
采样方法对比:
采样器 | 特点 | 适用场景 |
---|---|---|
Euler a | 快速稳定,适合新手 | 通用场景 |
DPM++ 2M | 高质量,稍慢 | 高要求项目 |
UniPC | 极高质量,耗时长 | 极致细节需求 |
这里直接将该软件分享出来给大家吧~
1.stable diffusion安装包
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。
最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。
2.stable diffusion视频合集
我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。
3.stable diffusion模型下载
stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。
4.stable diffusion提示词
提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。
5.SD从0到落地实战演练
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。
这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!