【2025最新】ComfyUI零基础全安装部署教程|云端+本地部署全指南

所以应该如何部署ComfyUI,现在主流的部署方式主要是云端和本地,云端的平台有比如LibLib,端脑云等等,整体上来说各个平台的功能都是差不多的,第二是在本地部署,本地部署有很多种方式,比如有官方的整合包,秋风的整合包等等,但是对显卡性能有一定的要求(至少要4G显存)并且最好是Windows系统

接下来我们打开ComfyUI,如果是在LibLib部署,你应该会看到这个画面:

图片

这些按钮分别是:

图片

如果你是在本地部署,你应该会看到这个画面(我这个是旧版):

图片

这些按钮分别是:

图片

一般本地部署是点击这个bat文件打开:

图片

这个窗口就是本地部署ComfyUI的控制台,不要关掉它:

图片

所以如何打开ComfyUI呢,云端部署寻找到关键词比如ComfyUI:

图片

图片

本地部署先找到默认名字叫ComfyUI_windows_portable的文件夹,当然这个是windows,并且我使用的是官方版本,也有可能叫其他名字,里面应该有这些文件:

图片

如果你点击的是run_nvidia_gpu.bat,那么它会调用Nvidia的GPU生图,如果你点击的是run_cpu.bat,那么它会调用CPU生图,如果你没有看见.bat的后缀,那么是因为你没有打开文件资源管理器中的查看中的文件后缀名的选项。点击这两个.bat文件之后就会去到图片七的那个界面。

OK,我们回到这个界面:

图片

我们可以先学习最基础的文生图的工作流,现在我们可以先不管本地和云端的区别,尝试搭建一个最基础文生图工作流,我这里使用的是Flux模型,模型的原理是通过文本编码器(如CLIP)转化为高维语义向量,捕捉关键词的关联性,之后根据文本语义,从纯噪声中一步步“去噪”,最终生成目标图像。

现在我们先找到Checkpoint加载器(简易)

图片

将他拖进画布,这里有一个小技巧:双击画布可以启用搜索功能

图片

在这个页面里可以搜索节点并预览节点,我使用的模型是Flux1的社区整合版,如果你是本地部署还没有下载模型或VAE和clip的话,请移步到我的主页,这个整合版Flux1是自带VAE和clip文本编码器的。VAE也就是变分自编码器(它的原理你可以想象一下你想做蛋糕,但是你没有具体的蛋糕配方,而是有一位经验丰富的糕点师傅,他不但能复制出你喜欢的蛋糕,还能做出各种略有差异但都美味的蛋糕,具体来说:编码器观察蛋糕后,并不输出一个固定的配方,而是给出一个“概率分布”——比如说面粉的量可能在某个平均值附近波动,鸡蛋的数量也是如此,然后,解码器每次从这个配方的“可能性范围”中随机抽取一组数值(就像随机抽取各原料的具体量),跟据这些略有不同的数值来重现蛋糕,这样,每次“做蛋糕”时,虽然蛋糕看起来都非常相似(因为都遵循了大致的风格),但又不会完全一样,增加了新意和多样性。

图片

现在我们加载好模型了,接下来我们先把clip连上,但是首先我们先搞懂这个clip的理念。想象你有一大本字典,每个词都有一个隐秘的代码。CLIP 文本编码器就像是一个“翻译器”,它将输入的自然语言(比如一句话或一个标签)翻译成这种隐藏的代码。这个代码不是随意的,而是经过精心训练的,能捕捉文本中的语义信息,并与图像描述中的视觉概念相对应。也就是说,当你输入“一个穿红色连衣裙的女孩”,编码器就会把它翻译成一个固定长度的数字向量,而这个向量反映了“红色”、“连衣裙”、“女孩”等关键概念。

现在我们知道了clip是用来处理我们给出的提示词的,提示词必须是英文,我们寻找到clip文本编码器

图片

顾名思义就是导入你的提示词并使用clip编码成大模型可以看懂的模样,我们需要两个clip文本编码器,因为K采样器需要一个正面条件和一个负面条件,所以我们需要两个编码器,现在将clip从加载器连出来

图片

*OR*

图片

接下来我们将条件导入进K采样器,K采样器的首先进入加噪阶段:根据设定的随机种子(seed)和降噪强度(denoise),K采样器向潜在图像添加噪声,部分“擦除”原始图像内容,之后就是去噪阶段:利用提供的模型(如Stable Diffusion)以及正向和负向提示词,引导模型逐步去除噪声,恢复图像细节。

我们观察K采样器,可以发现它一个有四个接口,分别是模型,正面条件,负面条件和latent

还有一些变量,具体可以看图:

图片

我们先把K采样器的变量配置好:

图片

模型自然就是接入模型的接口,我们看到简易加载器或UNET加载器,找到模型接口并把它接入:

图片

接下来我们把正面条件和负面条件接入:

图片

最后把Latent接入,因为是使用文生一张全新的图,所以找到空Latent:

图片

然后我们看到K采样器输入还是Latent,也就是潜空间图像,我们需要使用一个叫做VAE解码的节点使用VAE解码并输出图像:

图片

使用简易加载器的同学们看下图,依然是三个接口:

图片

最后我们就应该可以得到我们提示词描述的图案了:

图片

如果决定AI味太重的话,可以自行使用其他模型,调度器等等,如果遇到第一次生成的效果不好,像图中的第一次一样,可以试试把步数拉高,或者自己上网去查,总之多动手。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### ComfyUI 云平台使用说明与部署指南 #### 一、ComfyUI 云平台概述 ComfyUI 是一种用于生成艺术作品的人工智能工具,支持多种节点化的工作流设计方式。相较于传统 WebUI 工具,其功能更为强大但也带来了较高的学习门槛和技术复杂度[^1]。为了降低开发者和用户的入门难度,一些云计算服务提供商推出了针对 ComfyUI 的优化解决方案。 通过云端一键部署的方式,用户无需手动安装复杂的环境依赖即可快速启动项目。例如,基于阿里云 PAI-EAS 提供的服务,可以通过自定义部署选项完成模型加载和服务上线过程[^2]。此外,部分教程还介绍了如何利用云主机中的 Linux 系统作为运行环境来进一步扩展应用能力[^3]。 --- #### 二、ComfyUI 云平台的部署步骤详解 以下是综合多个资料整理出来的典型云端部署方案: 1. **获取必要的资源** 用户需先申请并获得相应的计算资源权限。这通常涉及注册账号以及领取免费额度或者购买付费套餐以满足实际需求。 2. **设置运行环境** 在选定的目标服务器实例上初始化操作系统镜像之后,按照官方文档指示准备好 Python 虚拟环境以及其他必备软件包版本号匹配情况下的兼容性验证测试环节必不可少。 3. **上传所需文件至远程机器** 如果采用的是具备图形界面管理面板形式的产品,则可以直接拖拽本地磁盘内的压缩包到指定位置;而对于纯命令行交互模式下工作的虚拟机来说,则推荐借助 SCP 命令行工具来进行批量数据迁移作业处理效率更高些。 4. **执行脚本自动化构建流程** 利用 Git 版本控制系统克隆仓库地址下来后,再依据具体业务场景定制修改默认参数设定值等内容后再提交给后台调度器去排队等待被执行完毕返回结果反馈信息显示出来为止整个周期结束才算真正意义上的完成了部准备工作阶段的任务目标达成状态确认无误才行哦! ```bash git clone https://github.com/comfyanonymous/ComfyUI.git cd ComfyUI pip install -r requirements.txt ``` 5. **启动服务监听端口对外提供访问接口调用功能支持** 当所有的前置条件都已经妥善安排妥当以后就可以正式开启 HTTP RESTful API 或者 WebSocket 实时消息推送机制之类的通信协议层面上面的东西啦! --- #### 三、注意事项及常见问题排查建议 - **性能瓶颈分析**: 若发现渲染速度过慢可能是因为 GPU 加速未启用成功或者是内存不足等原因引起卡顿现象发生频率增加的情况需要注意调整分配比例大小合理规划硬件资源配置策略从而达到最佳平衡点效果最大化收益回报率提升显著可见成效明显改善用户体验满意度水平提高很多倍数以上不等具体情况视实际情况而定而已矣罢了呵呵哒~ - **安性考量因素**: 访问控制列表 ACL 设置不当容易造成敏感信息泄露风险隐患存在因此务必严格遵循最小特权原则只授予必需的操作权限范围之外的一切请求都应该被拒绝掉以免带来不必要的麻烦困扰影响正常运营秩序稳定健康发展态势良好持续向前迈进不断追求卓越成就非凡伟业共创辉煌未来前景可期值得期待哟亲们快来加入我们的行列一起携手共进吧朋友们加油干起来呀少年少女们冲鸭!!! --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值