Stable Diffusion【应用篇】【图片修复】:模糊头像照片的高清修复


本文主要是回复一下后台小伙伴留言的问题。经小伙伴本人同意后,允许使用待修复的照片。

图片

我们先看一下待修复的照片。

图片

在向我咨询之前,小伙伴也自己进行了尝试,如果直接使用Stable Diffusion的后期处理功能,出来的图片效果是这样的。

图片

这个是没有问题的,因为图片的后期处理可以对模糊图片人脸面部进行修复,但是人脸之外的就没有办法,包括头发,服装等。

小伙伴也在图生图中使用了ControlNet的Tile模型和Lineart模型进行了处理,结果出来的图片效果是好的,但是人脸不一致了。

图片

的确,tile模型确实具有图片的高清修复功能,但是对于真人来说,人脸却无法保持一致。

那么有没有办法在保持人脸一致的基础上实现图片的高清修复呢?

其实,把上面的2步操作结合起来就可以做到,但是不能直接使用图生图的方式,而是使用图生图局部重绘将人脸通过蒙版固定+ControlNet的tile模型控制**即可。下面我们来看一下具体操作步骤。

第一步 】使用Stable Diffusion的后期处理功能

图片

我们这里先不对图片进行放大处理,先通过GFPGAN和CodeFormer**进行人脸面部修复处理。这2种人脸面部修复差别不大,实测将2种都选中效果更好。修复后的人脸效果。

图片

我们可以看到,后期修复除了人脸面部变高清之外,其他部分都还是模糊的。便于后期图片的处理,这里我们得到的图片仍然和原图片大小一样。

第二步 】图生图局部重绘相关设置

我们将人脸面部修复好的图片上传到图生图局部重绘功能区中。

图片

使用上图右边的画笔,将人脸区域涂白。

下面是图生图相关参数设置

图片

  • 蒙版模式:重绘非蒙版内容,针对我们使用画笔涂白以外的区域进行重绘。

  • 蒙版区域内容处理:原版

  • 重绘区域:整张图片

  • 采样器:Euler a

  • 采样迭代步数:20

  • 图片宽高:531* 715保持和上传的图片宽高一致

  • CFG: 7

  • 重绘强度:0.75

第三步 】大模型的选择

大模型这里我们使用majicMIX realistic 麦橘写实_v7版本。

图片

第四步 】提示词的编写

这里使用原模糊的图片通过WD1.4标签器反推出来

Prompt: solo,1boy,shirt,male focus,necktie,white shirt,collared
shirt,black hair,blue background,looking at viewer,realistic,black
eyes,striped,portrait,striped necktie,wing collar,closed mouth,smile,short
hair,提示词
:单人,1个男孩,衬衫,男性焦点,领带,白衬衫,有领衬衫,黑发,蓝色背景,看着观众,写实,黑眼睛,条纹,肖像,条纹领带,翼领,闭着嘴,微笑,短发,

第五步 】ControlNet参数设置

我们上传经过后期处理后的图片。

图片

相关参数设置如下:

  • 控制类型:选择"Tile/Blur(分块/模糊)"
  • 预处理器:tile_resample
  • 模型:control_v11f1e_sd15_tile
  • 控制权重:1
  • 引导介入时机:0
  • 引导终止时机:1

第六步 】图片的生成

点击【生成】按钮,我们来看一下最终生成的图片效果。

图片

图片

如果想得到更高清的图片,可以再使用后期处理的方式将图片放大处理。

好了,今天的分享就到这里了,希望今天分享的内容对大家有所帮助。

模型放在文末,感兴趣的小伙伴自取!

这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值