前言
我们通过各项配置,理解了LlamaIndex
在构建知识库和基于知识库的推荐两个阶段,怎么和业务相结合。本文,我们将开始深入理解LlamaIndex
的各个模块。首先,LlamaIndex
强大的Data Connector
数据连接器上场。
LlamaIndex
擅长和各种类型或格式的数据打交道,并通过Document
和Nodes
的概念,embedding
索引后,交给大模型处理,高精度完成AI知识库或AI助理应用开发。利用私有知识库,增强LLM
的检索能力, 即RAG
。
现在, 让我们来仔细研究Data Connectors
数据连接器模块的细节。
Data Connectors
开始深入之前,我们先来回顾下LlamaIndex
构建知识库(Knowledge Base)阶段的架构图。 最左侧的Data Sources部分展示了RAG
应用中,各种数据来源。RAG
应用多是聊天机器人或搜索的产品形式,入口简单,这就需要LlamaIndex
具备整合或自然语言处理各种格式,或各种渠道数据的能力。图中列出了Databases 数据库,Documents 文档,APIs 应用接口。假如是大型企业或组织,这是要整多少数据库,横跨多长时间的文档,散落在多少业务中的API?
LangChain
作为LLm开发框架,将RAG这块交给LlamaIndex
, 正因为它的专业。当我们开始着手RAG应用时,数据加载是非常重要的一个环节,且LlamaIndex
给我们安排了那些科技和狠活…
数据连接器接口
为支持不同数据源和格式的数据加载,LlamaIndex
准备了一堆数据接口类,让人好生欢迎
- Simple Directory Reader
- Psychic Reader
- DeepLake Reader
- Qdrant Reade
- Discord Reader
- MongoDB Reader
- Chroma Reader
- MyScale Reader
- Faiss Reader
- Obsidian Reader
- Slack Reader
- Web Page Reader
- Pinecone Reader
- Mbox Reader
- MilvusReader
- Notion Reader
- Github Repo Reader
- Google Docs Reader
- Database Reader
- Twitter Reader
- Weaviate Reader
连接demos
- 连接网页数据
ini复制代码from llama_index import download_loade