大模型(LLM)选择指南:AI解决方案的12个决策点

今天我们来看看国外各家领先的大型语言模型(LLM),这些模型来自OpenAI、Google、Anthropic、Cohere、Meta、Mistral AI以及Databricks等不同的供应商。我们会根据几个关键因素来评估这些模型,包括性能(涵盖价格、质量和速度)、上下文窗口的长度和授权方式等。为了让你能快速找到符合这些关键因素的理想模型,我们采用了一个星级评价系统来对价格、质量和速度进行评级。

接下来,我们还会详细探讨这些评估维度,以及在开发LLM应用时你可能需要考虑的其他重要方面。希望这些信息能帮助你做出更合适的选择!

在这里插入图片描述

数据来源:Artificial Analysis

大模型(LLM)革命浅谈

自从大模型(LLM)出现之后,处理文字的方式就发生了翻天覆地的变化。现在,不管是大公司还是小公司,都能轻松地使用这些强大的人工智能工具来完成各种各样的任务。本文将带您了解几种主流的大型语言模型,讲解它们能做什么、用在哪些地方,以及它们的性能如何。我们不只聚焦于OpenAI的模型,还会看看其他公司如Anthropic、Meta、Google的产品。

大型语言模型已经从只能做某个特定任务的工具变成了可以广泛应用的多功能工具箱。例如,OpenAI的ChatGPT就能在多种场景下展现出色的表现,而且用起来非常简单,不需要对它进行特别的培训。企业可以将这样的模型与自己收集的数据结合起来,这样就能够更好地利用人工智能,而且效果往往比传统的处理方法要好。

在过去的一年中,从创业公司到大公司,使用大型语言模型的案例迅速增多。像OpenAI、Google和Meta这样的大公司正在引领这股趋势,而像Mistral AI和Databricks这样的新公司也在快速成长。通过本文,我们希望能帮您更容易地选择和使用这些高科技的模型。

大模型(LLM)的基准测试

在选大模型(LLM)时,我们很想直接选个“最牛”的。但实际上,这事儿没那么简单。我们一般用一些标准的测试来看看这些模型能干嘛,这些测试或许是看看模型对通用知识的掌握,或是它们在特定领域(比如编程或多语言处理)的能力。这些测试很有帮助,但也有它们的不足之处:

  • 数据泄露:有时候,测试用的数据不小心混进了训练用的数据里,这就让模型可能“记住了答案”。这样的话,测试结果可能看起来很好,但实际上并不能真实反映模型在真实环境下的表现。
  • 错误:有些排行榜可能有错,所以这些榜单的结果也得打个问号。
  • 真实世界的表现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值