- 博客(461)
- 收藏
- 关注
原创 NLP入门到精通必读书籍-《自然语言处理:大模型理论与实践》(预览版)免费pdf分享
自然语言处理(Natural Language Processing, NLP)作为计算机科学与人工智能领域的关键技术,其核心目标是让计算机能够理解、解释并生成自然语言。在当今的人工智能时代,NLP技术已经深入渗透到我们日常生活的各个方面,从智能助手、语音识别到机器翻译和文本生成,NLP正在以令人瞩目的速度改变着我们的生活方式。
2025-04-02 15:02:37
852
原创 大语言模型推理策略全解析,通向 AGI 的关键一步!零基础小白收藏这一篇就够了!!
在人工智能飞速发展的当下,大语言模型(LLMs)凭借强大的语言处理能力,成为了迈向通用人工智能(AGI)征程中的焦点选手。但你知道吗?LLMs 在语言能力上虽然表现卓越,可一旦涉及复杂推理任务,就会暴露出明显短板。今天,咱们就深入研读《Thinking Machines: A Survey of LLM based Reasoning Strategies》这篇综述论文,一起探寻提升 LLMs 推理能力的奥秘,看看它们离真正的 “思考” 还有多远。
2025-04-02 11:09:40
688
原创 Dify文档喂不饱模型?让你们工程师试试硬核RAG(Embedding微调)
在 AI 时代,Embedding 是 NLP 任务的基石,直接决定了你的模型是「聪明绝顶」还是「笨拙不堪」。你是否遇到过这些让人头疼的问题:做智能问答时,模型总是答非所问,用户一脸懵圈?做推荐系统时,用户翻遍推荐内容,还是觉得「没一个对味」?做语义搜索时,搜索结果五花八门,相关性差到让人抓狂?
2025-04-01 11:56:05
877
原创 【AI大模型】深入MCP Remote模式:两大基础协议及工作原理,一步步教你弄懂
MCP(模型上下文协议)的集成架构是一种典型的客户端(AI应用)与服务器(MCP Server)架构。相对于本地模式中的进程间通信,跨越机器边界的远程模式则体现出更多的复杂性:传输协议、状态维持、并发处理等,都是棘手的问题,这也导致其Remote模式的标准一直还在不断完善中。
2025-04-01 10:33:14
1053
原创 DeepRAG:LLM时代的智能检索革命(实测提升准确率21.99%)
检索增强生成(Retrieval-Augmented Generation, RAG)一直被视为解决大模型幻觉问题的关键。然而,在现实应用中,RAG经常面临两个核心痛点:
2025-03-31 22:25:37
966
原创 上海AI Lab发布LLM高效Reasoning综述!全面总结如何“少想多做”
近年来,以DeepSeek-R1、OpenAI o1为代表的大型推理模型(LRMs)展现出惊人的复杂问题解决能力。它们像人类一样通过“思维链”(Chain-of-Thought)逐步推导答案,但这种能力却带来了新烦恼——AI太能“碎碎念”了!
2025-03-31 21:10:07
708
原创 AI大模型部署的问题,以及企业级大模型的分布式部署方案,收藏这一篇就够了!!
“大模型的分布式训练和部署,是一个必须要学会的东西”在学习大模型的过程中,很多人都知道大模型的训练与部署,但网上大部分资料介绍的都是单机训练和部署。
2025-03-30 08:00:00
758
1
原创 【AI大模型】“RAG界的deepseek”开源-企业复杂私域知识理解与推理框架PIKE-RAG
PIKE-RAG框架的设计目标是提供一个灵活且可扩展的RAG系统,应对工业应用中复杂多样的任务需求。框架的核心是通过有效的知识提取、理解和组织,以及构建连贯的推理逻辑,解决了RAG系统在工业应用中的局限性。下面来看下微软开源的PIKE-RAG框架及其实现过程,供参考。
2025-03-29 16:03:37
268
原创 【AI大模型】RAG知识库的数据方案:图数据库、向量数据库和知识图谱怎么选?看完这一篇你就懂了!!
想解决一个困扰企业多年的问题:如何让员工快速找到所需信息?检索增强生成(RAG)技术有望成为解决这一难题的关键,但如何选择最合适的数据存储方案?向量数据库?图数据库?还是知识图谱? 让我们一探究竟。
2025-03-29 10:25:28
788
原创 【AI大模型实战项目】llm-action:让天下没有难学的大模型
对于普通大众来说,进行大模型的预训练或者全量微调遥不可及。由此,催生了各种参数高效微调技术,让科研人员或者普通开发者有机会尝试微调大模型。因此,该技术值得我们进行深入分析其背后的机理,本系列大体分七篇文章进行讲解。
2025-03-28 15:11:09
1011
原创 Transformer | 一文了解:缩放、批量、多头、掩码、交叉注意力机制(Attention)
之前的文章分享了Attention算法的演化。但是对于基础的Attention算法的细节整理的不够详细,今天这篇文章填补上这一点,并利用纯Python和Numpy实现注意力模块,并解释了整个过程中的所有向量维度的变化,对刚入门的新手非常友好。文章安排如下:
2025-03-28 10:58:59
1094
原创 AI大模型入门教程(全网最详细),零基础入门到精通,从看这一篇开始!
在人工智能领域,特别是在自然语言处理(NLP)和机器学习中,AI大模型是指那些拥有大量参数的深度学习模型。这些模型通过在大规模数据集上进行训练,能够学习到丰富的数据表示和模式,从而在各种任务上表现出色,如文本生成、语言理解、图像识别等。大模型具有大量参数和复杂结构的特点,这些模型通常具有数十亿甚至数万亿个参数,能够处理大规模的数据和复杂的任务。大模型通常使用深度学习技术,如深度神经网络,以从数据中学习并提取特征来执行各种任务。
2025-03-27 15:17:10
417
原创 做完RAG图片搜索后,才明白过去对RAG的理解完全不够!!
在AI技术飞速发展的今天,图片RAG(Retrieval-Augmented Generation,检索增强生成)正逐渐成为多模态应用的“杀手锏”。无论是电商平台的“以图搜商品”,还是教育领域的“文本生成插图”,图片RAG通过检索与生成的高效结合,能带来令人惊叹的效果。
2025-03-27 10:55:56
1065
原创 Java程序员如何在AI大模型浪潮中逆袭?看完这一篇你就懂了!!
综上所述,虽然当前Java程序员面临着一定的职业挑战,但他们凭借自身的技术积累和工程实践,完全可以抓住AI大模型带来的新机遇,成功实现转型。在这个过程中,保持持续学习的态度,勇于探索未知领域,将是每一位希望在AI浪潮中有所作为的Java程序员不可或缺的品质。未来属于那些敢于突破自我、不断创新的人,让我们共同迎接这个充满无限可能的时代吧!
2025-03-26 15:33:04
893
原创 三种RAG方案实测:自建知识库 vs 腾讯IMA vs Google的AI笔记本,收藏这一篇就够了!!
Deepseek-R1推出有一段时间了,其通过在线搜索回答问题的能力,在保证推理水平的同时提高了其实时性和可信度。但有些行业内的知识比较冷门,在搜索中无法找到,因此使用RAG技术的知识库,是对模型能力的一种补足。通过将检索和生成相结合,既保留了传统检索问答的可靠性,又获得了 LLM 的灵活性和自然表达能力。它能让 AI 始终基于最新的、可信的知识来回答问题,同时保持对话的流畅自然。
2025-03-26 10:29:25
1066
原创 AI时代转行指南,从零基础到AI产品经理,快速掌握大模型技术,享受行业红利
随着2025年的到来,人工智能(AI)经历了从萌芽到成长的过程后,正式迈入了成熟期。这一转变标志着AI技术的大规模应用阶段的到来。在这个阶段,AI技术不再是孤立的技术突破,而是与各行各业深度融合,创造出前所未有的商业价值和社会效益。对于那些渴望在AI领域寻求职业发展的专业人士而言,这既是机遇也是挑战。
2025-03-25 14:42:05
585
原创 多模态大模型新标杆!Gemma 3 本地部署和 Java 调用全攻略
谷歌最近发布了 Gemma 3,这是其开源模型家族的最新版本,为 AI 行业带来了深远的创新。Gemma 3 凭借多模态处理能力、庞大的上下文窗口和增强的语言支持,标志着大型语言模型 (LLM) 发展的重要里程碑。该模型的开源特性为开发者和研究人员提供了前所未有的机会,可以在各种应用场景中探索和利用先进的 AI 能力。
2025-03-25 10:47:19
826
原创 AI时代下的产品经理转型:从传统到AI,一场生死存亡的挑战
在快速变化的时代背景下,产品经理的角色也在不断地演变。尤其是在人工智能(AI)技术飞速发展的当下,产品经理面临着前所未有的挑战与机遇。以下是从亲身经历出发,对产品经理团队调整的几点观察与思考。对于希望转型成为AI产品经理的人来说,以上几点不仅是一种能力的要求,也是一种心态的转变。只有不断学习、拥抱变化,才能在这个快速发展的领域中立足。如果你能够理解并接受这些挑战,那么你就具备了成为优秀AI产品经理的巨大潜力,有能力引领行业变革,超越那些还在舒适区徘徊的传统产品经理。
2025-03-24 14:22:27
1042
原创 AI Agents入门教程之从零开始构建Agent,建议收藏起来慢慢看!!
在本文中,我们将探讨如何使用 Python 从零开始构建一个Agent。该Agent能够根据用户输入做出决策、选择适当的工具并执行相应的任务。让我们开始吧!
2025-03-24 10:46:27
1026
原创 一文搞懂DeepSeek - 强化学习和蒸馏,收藏一篇就够了!!
DeepSeek-R1在Introduction部分提到,R1通过结合冷启动数据、多阶段训练管道和纯强化学习,显著提升了大型语言模型的推理能力,实现了与OpenAI的o1系列模型相当的性能,并通过蒸馏技术将推理能力传递给更小的模型。
2025-03-23 08:00:00
701
原创 字节跳动离职后,转行学起了AI大模型!该说不说,真的香!!
鄙人出生于南方小乡镇,为了走出小镇,在当地够拼够努力,不是自夸,确确实实也算得上“别人家的小孩”,至少在学习这件事情少,没有要家里人操过心。高考特别顺利,一个老牌985,具体哪个学校就不说了,不想给母校丢脸。毕业后,也算是“风光”地进入了字节跳动。做的是运维测试。
2025-03-22 15:15:50
625
原创 一文说清楚什么是预训练(Pre-Training)、微调(Fine-Tuning),零基础小白建议收藏!!
预训练和微调是现代AI模型的核心技术,通过两者的结合,机器能够在处理复杂任务时表现得更为高效和精准。预训练为模型提供了广泛的语言能力,而微调则确保了模型能够根据特定任务进行细化和优化。近年来,人工智能(AI)在各个领域的突破性进展,尤其是在自然语言处理(NLP)方面,引起了广泛关注。两项重要的技术方法——预训练和微调,成为了AI模型发展的基石。
2025-03-22 10:39:11
635
原创 普通人学习AI应该如何入手?2025年最新AI大模型学习路线+全套学习资料,适合新手小白!
随着人工智能(AI)技术的飞速发展,越来越多的人开始意识到掌握这项技能的重要性。然而,对于许多没有编程背景或数学基础的人来说,进入AI领域似乎是一个遥不可及的梦想。但实际上,通过合理的规划和适当的学习资源,任何人都可以逐步掌握AI的核心知识,并应用到实际工作中去。本文将为普通读者提供一份详细的2025年最新AI大模型学习路线图,并附带一套完整的自学资料,帮助您从零基础起步,顺利开启AI学习之旅。
2025-03-21 14:04:34
1051
原创 R1/o1/o3等LRM火热背后,微调、推理等LLM后训练方法,看这篇综述够了 |最新
随着DeepSeek-R1、OpenAI的o1和o3等大型推理模型(Large Reasoning Models,LRMs)的出现,我们正在见证一个关键转变:从单纯依赖预训练向精细化后训练(Post-training)技术的飞跃。这些模型不仅在基准测试上取得了突破性成绩,更在复杂推理和实际应用中展现出前所未有的能力。
2025-03-21 10:29:52
694
原创 不会用AI大模型的程序员,5年后必将被淘汰?真相远比你想的更残酷!
在技术飞速发展的今天,AI大模型已经成为程序员技能库中的“标配”。如果你还认为AI只是“锦上添花”的工具,那么5年后,你可能真的会被时代无情淘汰。这不是危言耸听,而是技术变革的必然趋势。
2025-03-20 14:56:04
943
原创 国产AI卷疯了,QwQ-32B登顶全球最强开源模型!
最新一期的 LiveBench 国际权威榜单放出来,阿里通义千问 QwQ-32B 一举冲进全球前五,并且直接坐稳最强开源模型的宝座!过去几年,聊起开源大模型,大家第一反应肯定是 Meta(Llama)、Mistral 这些欧美厂牌,基本是他们说了算。而如今,我们的DQ(DeepSeek & Qwen)以压倒性优势登顶 LiveBench,标志着中国 AI 开源模型正式进入全球第一梯队!
2025-03-20 10:29:14
649
原创 2025最新AI大模型学习路线及资料整合包(必读书籍PDF+大厂面试题+项目实战+视频教程)
随着人工智能(AI)技术的迅猛发展,特别是大型预训练模型(大模型)在自然语言处理(NLP)、计算机视觉等多个领域的广泛应用,掌握AI大模型相关技能已成为科技工作者和爱好者的重要目标。各大厂为了吸引顶尖人才,不仅提高了薪资待遇,还在面试环节设置了更为严格的考核标准。本文整理了2025年最新的AI大模型大厂面试题,并提供了详细的答案解析及相关学习资源,旨在帮助求职者更好地准备面试,提升通过率。
2025-03-19 13:58:05
931
原创 LLM大模型: RAG的langchain+向量数据库实现和评估方案
LLM大模型的核心功能之一就是聊天对话(信息检索),RAG的使用必不可少!大致的流程是:用户的query先转成embedding,去向量数据库查询最接近的top K回答;然后这query + top K的回答 + 其他context一起进入LLM,让LLM整合上述所有的信息后给出最终的回复!
2025-03-19 10:16:43
896
原创 Github标星30K的神仙面试笔记,包含了所有AI大模型大厂知识面试题
在人工智能(AI)领域,想要获得一份理想的工作,面试无疑是至关重要的一环。近日,一份在Github上标星超过30K的面试笔记成为了AI领域的热门话题。这份被誉为“神仙面试笔记”的资料,包含了所有AI大模型和大厂的知识面试题,成为了求职者们的“秘密武器”。
2025-03-18 14:30:11
278
原创 基于DeepSeek模型知识库,Cherry Studio和AnythingLLM使用效果对比
网上有很多构建本地知识库的文章,我们更应该更深入应用,对比不同的应用效果,才能发挥知识库本身的价值。(1)基础模型为deepseek-r1:8b。(2)嵌入模型分别为:deepseek-r1:8b、BAAI/bge-m3和nomic-embed-text。(3)投喂资料为iNeuOS工业互联网操作系统的130个相关资料。
2025-03-18 10:46:45
748
原创 30年老码农揭秘,零基础啃下AI高薪岗位的野路子,建议收藏!!
老哥们,我干IT三十年了,从DOS时代玩到现在的深度学习大模型,见过不下十次技术革命。最近看到DeepSeek这些国产大模型突然爆红,朋友圈天天刷屏"AI人才缺口500万"的新闻,说实话,我这老码农的DNA又动了。今天就掏心窝子和各位聊聊,非科班出身的普通人怎么抓住这波AI红利。
2025-03-17 14:51:15
942
原创 小白浅尝DeepSeek本地私有化部署:从0到1(附个人感受)
随着今年春节Deepseek的爆火,机器人在春晚的表演,注定了2025年又是AI、人工智能爆火的一年。作为一名平时仅仅只是用AI在线产品的人,也跟风玩了一下DeepSeek的本地私有化部署,至于部署后的一些个人体会和心得,我写在了文末~什么是DeepSeek我就不作过多介绍了,还是先简单介绍一些本地私有化部署的一些客观优势吧。
2025-03-17 10:54:29
1198
原创 自然语言处理 - 一文搞懂NLP(一):总体介绍
NLP是什么?NLP是一种机器学习技术,使计算机能够解读、处理和理解人类语言。NLP的本质: NLP的本质就是人类和机器之间沟通的桥梁!
2025-03-16 08:00:00
1198
原创 多模态RAG深度解析:揭秘AI新技术,零基础小白看到就是赚到!!
多模态检索增强生成_(Multimodal Retrieval Augmented Generation,简称RAG)_是一种新兴的设计范式,允许AI模型与文本、图像、视频等多种信息存储接口进行交互。在探讨这个主题时,我们首先会介绍什么是检索增强生成_(RAG)_,多模态的概念,以及如何将两者结合以构建现代多模态RAG系统。在理解了多模态RAG的基本概念后,我们将使用Google Gemini和一种类似CLIP的编码模型来构建一个多模态RAG系统。
2025-03-15 08:00:00
864
原创 AI大模型时代,Java程序员的中年危机与自我救赎之路
近年来,随着AI技术的飞速发展,尤其是大模型(如ChatGPT、GPT-4等)的崛起,程序员行业正经历着一场前所未有的变革。作为曾经“高薪代名词”的Java程序员,如今也不得不面对一个残酷的现实:技术更新迭代的速度远超想象,单纯依赖传统编程技能已经不足以应对未来的挑战。
2025-03-14 14:08:32
659
原创 零基础小白学大模型必看!手把手带你从零微调大模型!
今天分享一篇技术文章,你可能听说过很多大模型的知识,但却从未亲自使用或微调过大模型。今天这篇文章,就手把手带你从零微调一个大模型。大模型微调本身是一件非常复杂且技术难度很高的任务,因此本篇文章仅从零开始,手把手带你走一遍微调大模型的过程,并不会涉及过多技术细节。希望通过本文,你可以了解微调大模型的流程。
2025-03-14 10:37:39
966
原创 AI人才争夺战,平均年薪40万,面试互联网大厂也成加分项!!
年薪30万,居然是“白菜价”?近来,国内外企业高薪寻求技术人员的招聘信息,将人工智能领域的就业热度刷新到了新高度。全球排名第一的求职网站Indeed发布的报告显示,与Gen AI相关的职位发布量和薪资水平呈现急剧上升趋势
2025-03-13 16:07:26
886
原创 Manus工作原理大揭秘:下一代AI Agent的多智能体架构究竟是怎么设计的?
AI智能体Manus突然杀出,瞬间引爆整个科技圈。现在所有AI爱好者都在抢破头要Manus邀请码,闲鱼上已经炒到从999块到五万块都有。这波热潮说白了,就是大伙儿都盼着下一代AI交互方式赶紧到来。
2025-03-13 11:41:13
850
原创 【AI大模型面试】一听到面试问RoPE旋转位置编码,就脑壳疼....
ChatGLM 和 LLaMA 中使用的旋转位置编码(RoPE),原版论文中大段大段的公式推导实在是太绕了,看了脑壳疼。这篇文章我用能理解能记住的方式梳理一下。我个人觉得关于 RoPE 的核心问题有两个:
2025-03-12 19:29:46
1053
原创 DeepSeek+AnythingLLM,搭建本地AI知识库,真的太香了!三分钟搞定智能助手,小白也能轻松上手!
你是否每次查找文档翻遍文件夹,会议纪要总在关键时刻“失踪”?别慌! 今天揭秘一个“真香”组合——DeepSeek+AnythingLLM,轻松搭建本地知识库,AI秒变你的“第二大脑”!
2025-03-12 11:18:57
1144
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人