AI大模型部署的问题,以及企业级大模型的分布式部署方案,收藏这一篇就够了!!

前言

“大模型的分布式训练和部署,是一个必须要学会的东西”

在学习大模型的过程中,很多人都知道大模型的训练与部署,但网上大部分资料介绍的都是单机训练和部署。

1、大模型训练或部署中的问题‍

‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

在学习大模型训练和部署的过程中,很多人都是按照网络上的教程进行学习;但这些教程大部分只讲了浅显的东西,还有很多问题没有讲明白。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

比较明显的两个问题就是,大模型的规模问题和大模型的适配问题。‍

规模问题

学习和企业级应用是有着巨大差别的,比如说学习大模型的过程中,只需要设计一个几十个参数的大模型即可了解大模型的设计,训练和使用原理。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但在真正的企业级应用中,大模型的参数少则几个亿,多则几十,几百,甚至几万亿的参数量。‍‍‍‍‍

在这种企业级应用中,如果大规模的参数怎么保存,怎么加载;单机硬件资源有限的情况下,怎么进行分布式训练和分布式部署。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

以openAI的chatGPT来说,最新版的gpt4o预估有一千七百多亿个参数,后续的gpt5等更高等级的版本中,参数量可能会更多。‍‍‍‍‍‍‍‍‍‍‍‍‍

而如此规模的大模型,要在一台机器上进行训练和推理几乎是不可能的,哪怕是超级计算机也会很吃力。‍‍‍‍‍‍‍‍‍‍‍

而在之前的学习过程中,基本上都是从pytorch或huggingface或者github上下载一些开源的大模型。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而这些大模型主要是用来学习的,因此参数量规模较小,个人电脑就可以跑的起来。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

个人开发的一个人工智能聊天机器人小程序,感兴趣的可以点击查看:

但在真正的企业级环境中,哪怕可以使用个人电脑或者服务器进行训练和推理;但当企业用户规模达到一定程度之后,如果不进行分布式或集群部署,是绝对不行的。‍‍‍‍‍‍‍‍‍‍‍‍

大模型的适配问题

比如说我们使用ollama或者其它的框架,在本地部署大模型,我们知道在学习的过程中都是直接从网络上下载别人弄好的大模型。‍‍‍‍‍‍‍‍‍‍

假如说,需要你自己设计或者从网上找一个开源的大模型进行训练之后,怎么才能把这个模型适配到ollama框架中,也就是说要把大模型转化为ollama要求的格式。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

比如说,使用llama.cpp项目进行大模型的适配具体应该怎么做? ‍‍‍

2、大模型企业级方案

在前一节中说,大模型个人使用和企业级应用是完全两回事,不论是从参数量还是访问规模上都不可同日而语。‍‍‍‍

企业级大模型需要解决以下几个问题:‍‍‍‍‍‍‍‍

可以单机部署的小模型怎么解决大规模用户访问?‍‍‍‍‍‍‍‍‍‍‍‍

举个例子,企业中有一个几个亿参数的小模型,但企业却有几个亿的用户需要使用它,应该怎么办?‍‍‍‍

这时,一种方案是把小模型进行集群部署,比如说用一百台或者一千台机群分别部署同样的小模型,然后采用负载均衡的方式进行访问。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

其次,如果有一个几千亿参数的大模型,单机无法支持的情况下应该怎么训练和部署?‍‍‍‍‍‍‍‍‍

这种方式只能采用分布式部署或者分布式+集群的方式进行部署;比如把一个模型按照功能逻辑拆分成几个模块,然后在不同的机器上进行训练和推理;最后用并行计算的方式对外提供服务。‍‍‍‍‍‍‍‍‍‍‍‍‍

关于大模型分布式训练和推理的三大并行方式:‍‍

  1. 数据并行(Data Parallelism)
  • 将模型复制到多台机器上,并在每台机器上使用不同的训练数据进行训练。

  • 每台机器计算出梯度后,将这些梯度聚合到一起并更新模型参数。

  • 常用的工具包括TensorFlow的分布式策略、PyTorch的分布式数据并行等。

  1. 模型并行(Model Parallelism)
  • 将模型的不同部分分布到不同的机器上。

  • 每台机器只计算模型的一部分前向传播和后向传播。

  • 这种方法适用于模型特别大,单台机器的内存无法容纳整个模型的情况。

  1. 流水线并行(Pipeline Parallelism)
  • 将模型分成多个阶段,每个阶段分布在不同的机器上。

  • 输入数据依次通过这些阶段,类似于生产流水线。

  • 这种方法结合了数据并行和模型并行的优点,适用于大规模训练。

  1. 混合并行(Hybrid Parallelism)
  • 将上述方法进行组合,以适应特定的需求。

  • 例如,数据并行和模型并行的组合,可以充分利用计算资源和内存资源。

最后一种并行方式属于把前面三种方式的结合,算不上是一种新的方式。‍‍‍

常见的一些技术框架:‍‍‍‍

实现分布式部署的一些工具和框架

  • TensorFlow:提供了多种分布式策略,如 tf.distribute.MirroredStrategy(数据并行)和 tf.distribute.TPUStrategy(TPU上的数据并行)。

  • PyTorch:提供了 torch.distributed 包,支持数据并行和模型并行。

  • Horovod:一个开源库,最初由Uber开发,支持TensorFlow、Keras、PyTorch等的分布式训练,简化了多GPU和多机器训练的实现。

  • DeepSpeed:微软开源的一个深度学习优化库,支持大规模模型的分布式训练和推理。

这篇文章只是简单介绍和说明一下大模型训练和部署中可能出现的问题,以及企业级应用中的解决方案,由于个人也在学习的过程中,所以有些东西讲的有点乱,也不是很明白。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值