在大模型智能体快速发展的今天,FastGPT和Dify作为两个最具代表性的开源智能体开发平台。FastGPT专注于知识库问答和RAG场景的深度优化,而Dify则致力于构建基于LLM的Agent智能体应用程序,降低开发门槛,支持多种应用类型。
一、FastGPT + RAG知识库
什么是FastGPT? FastGPT是一个基于LLM大语言模型的专业知识库问答系统,专注于RAG(检索增强生成)场景的开源平台,帮助开发者快速构建企业级知识库应用,在检索精度和响应速度方面表现卓越。
1. 知识库管理:文档上传、分片处理、向量化存储
2. 智能问答:基于RAG的高精度问答系统
3. 工作流编排:可视化Flow设计器,支持复杂业务逻辑
4. 引用溯源:可追溯的答案来源,确保信息可信度
如何在FastGPT中构建RAG知识库? FastGPT的RAG实现涉及文档预处理、向量化、检索优化等多个关键步骤,旨在构建一个高精度、高可用的企业知识检索系统。
1. 知识库创建与文档管理
- 创建知识库:在FastGPT主界面选择"知识库",点击"新建知识库"开始创建流程。
- 文档上传:支持Word、PDF、Excel、Markdown、TXT等格式,可批量上传文档。
- 网页抓取:支持URL导入和整站数据同步,自动提取网页内容。
2. 文档预处理与分片策略
- 自动分片:FastGPT提供智能分片算法,根据文档结构自动切分内容。
- 语义分片:基于语义理解的分片方式,保持内容的完整性和连贯性。
- QA分割:自动识别问答对结构,提升问答场景的检索效果。
3. 向量化与索引策略
- 混合检索:结合向量检索和全文检索,通过RRF算法重排结果。
- 向量模型选择:支持多种embedding模型,可根据场景选择最适合的模型。
- 索引优化:针对不同文档类型和查询模式进行索引优化。
4. 检索配置与优化
- 相似度阈值:设置合适的相似度阈值,平衡召回率和准确率。
- TopK设置:配置返回结果数量,控制检索范围。
- 重排序算法:利用RRF(Reciprocal Rank Fusion)算法优化结果排序。
二、Dify + Agent智能体
什么是Dify(Define & Modify)? Dify是一个开源的大语言模型(LLM)应用开发平台,旨在简化和加速生成式AI应用的创建和部署,为开发者提供了一个用户友好的界面和一系列强大的工具使他们能够快速搭建生产级的AI应用。
Dify通过可视化编排、模块化设计和丰富的功能组件(如RAG、Agent、多模型支持),帮助开发者快速构建生产级AI应用,显著降低技术门槛。
Dify提供四种基于LLM构建的应用程序,可以针对不同的应用场景和需求进行优化和定制。
1. 聊天助手:基于LLM的对话交互(如客服机器人)
2. 文本生成:自动化创作、翻译等任务
3. Agent:任务分解+工具调用(如论文查询、数据分析)
4. 工作流:多节点流程编排(如条件分支、API调用)
如何在FastGPT中构建RAG知识库? FastGPT的RAG实现涉及文档预处理、向量化、检索优化等多个关键步骤,旨在构建一个高精度、高可用的企业知识检索系统。
1. 选择推理模型
Agent智能体的任务完成能力很大程度上取决于所选LLM模型的推理能力。
如何在Dify平台搭建Agent智能体?在Dify平台上,通过选择模型、编写提示、添加工具与知识库及配置对话开启器,最后进行调试预览并发布为Webapp,实现Agent智能体的创建与部署。
2. 编写提示与设置流程
在“说明”(Instructions)部分,用户可以详细编写Agent智能体的任务目标、工作流程等提示信息。这些信息将帮助Agent智能体更好地理解并执行任务。
3. 添加工具与知识库
- 工具集成**:在“工具”(Tools)部分,用户可以添加各种内置或自定义工具,以增强Agent智能体的功能。这些工具可以包括互联网搜索、科学计算、图像创建等,帮助Agent智能体与现实世界进行更丰富的交互。**
- 知识库**:在“上下文”(Context)部分,用户可以整合知识库工具,为Agent智能体提供外部背景知识和信息检索能力。**
4. 配置对话开启器
用户可以为Agent智能体设置对话开场白和初始问题,以便在用户首次与Agent智能体交互时,展示其可以执行的任务类型和可以提出的问题示例。
5. 调试与预览
在将Agent智能体发布为应用程序之前,用户可以在Dify平台上进行调试和预览,以评估其完成任务的有效性和准确性。
6. 应用程序发布
一旦Agent智能体配置完成并经过调试,用户就可以将其发布为Web应用程序(Webapp),供更多人使用。这将使得Agent智能体的功能和服务能够跨平台、跨设备地提供给更广泛的用户群体。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~