在企业环境中构建AI智能体系统时,最简单的工作流模式往往能带来最好的效果和最大的商业价值。Anthropic在去年年底总结了这些顶级模式,到现在依然非常实用。
1. 提示链模式(Prompt Chaining)
核心思想:将复杂任务分解成多个可管理的小块,通过链式连接来解决。前一个LLM调用的输出成为下一个的输入。
优势:这种分解方式通常能提高准确性,代价是增加了延迟。
实际应用:在高负载的生产环境中,提示链经常和其他模式组合使用,其他模式可以替换提示链中的某个LLM调用节点。
2. 路由模式(Routing)
核心思想:根据输入内容进行分类,选择最合适的处理路径。
适用场景:当工作流比较复杂,特定的拓扑路径可以用专门的工作流更高效地解决时。
典型例子:智能客服机器人需要判断——是用RAG来回答用户问题,还是执行用户要求的特定操作?
3. 并行化模式(Parallelization)
核心思想:将初始输入拆分成多个查询,并行传递给LLM处理,然后汇总结果得到最终答案。
适用场景:
- 当速度很重要,多个输入可以并行处理而不需要等待其他输出时
- 需要更高准确性的情况
实际例子:
- 例子1:智能RAG中的查询重写,生成多个不同查询进行多数投票,提高准确性
- 例子2:从发票中提取多个项目,可以并行处理以提高速度
4. 编排器模式(Orchestrator)
核心思想:编排器LLM动态分解任务,并委派给其他LLM或子工作流。
适用场景:当系统复杂且没有明确的硬编码拓扑路径来实现最终结果时。
典型例子:智能RAG中选择使用哪些数据集。
5. 评估-优化模式(Evaluator-Optimizer)
核心思想:生成器LLM产生结果,然后评估器LLM对结果进行评估,并在必要时提供改进反馈。
适用场景:需要持续优化的任务。
典型例子:深度研究智能体工作流,需要通过持续的网络搜索来优化报告段落。
实施建议
在考虑构建完整的智能体系统之前,应该先尝试用这些更简单的工作流模式来解决问题。这些基础模式往往能以更低的复杂度实现相同的效果,同时具有更好的可维护性和稳定性。
这些模式可以单独使用,也可以组合使用,关键是要根据具体的业务场景选择最适合的方案。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~