- 博客(1080)
- 收藏
- 关注
原创 AI Agent新范式:从工具调用到代码执行,解决上下文臃肿的终极方案!
文章探讨了AI Agent使用大量工具时面临的"上下文臃肿"和"数据冗余"问题,提出"代码执行模式"作为解决方案。该模式让Agent生成代码而非直接调用工具,在沙箱环境中执行,实现按需加载工具、本地数据处理、增强隐私保护和形成可复用技能树,能将Token使用量从150,000降至2,000,实现98.7%的优化,是AI Agent从"工具调用者"进化为"程序员"的范式转变。
2025-12-14 08:45:00
1109
原创 AI+医疗革命:医生将被取代还是进化?医学教育转型与AI协作指南(必收藏)
文章探讨AI如何重塑医学教育与医生角色。AI被视为医生的外接认知层,不会替代人类判断,但会成为推理中不可或缺的一环。医学教育需要重构,包括个性化学习路径、临床模拟和考核方式改革。同时必须警惕AI带来的风险,如推理能力退化、模型偏差和伦理问题,建立安全护栏,确保AI放大医生能力而非削弱核心临床能力。
2025-12-14 08:00:00
1172
原创 2025年中国大模型行业深度研究报告:产业格局与未来趋势分析,引领AI技术新潮流!
中国大模型产业已成为科技创新与安全的战略支点,形成"创新驱动、基础强化、场景牵引、安全治理"四位一体发展格局。产业正从技术竞速转向生态竞合,CBDG四维生态模型成为新范式。未来趋势包括多模态融合、智能体化演进和具身智能突破,产业趋势将重塑价值链和生态体系,治理趋势聚焦安全可信与国际竞合。
2025-12-13 08:15:00
876
原创 AI记忆革命:Mem-α让大模型学会自主管理记忆,13倍长度泛化能力详解!
Mem-α论文解决了大语言模型"记性不好"的问题。它通过强化学习训练模型,让其自主学会管理记忆,而非人工设定规则。该系统设计了三种"笔记本"(核心、情景、语义)存储不同类型信息,通过"考试"倒逼模型掌握记忆技巧。实验显示,只需在短文本(3万字)上训练,模型就能处理超长内容(40万字以上),实现了13倍的长度泛化能力,效果远超传统方法。
2025-12-13 08:00:00
679
原创 (2026)零基础AI产品经理学习指南:思维导图、视频教程、案例实战,从入门到精通!
文章介绍了AI产品经理的职责、技能要求与入门指南,包括与通用产品经理的异同点、必备技能及实践建议。同时提供了AI大模型学习的完整资源,包括思维导图、视频教程、应用报告、案例PPT、电子书和面试题等。文章强调先掌握AI技术的人具有竞争优势,并提供免费学习资源帮助小白和程序员快速入门AI大模型。
2025-12-12 11:21:15
1024
原创 开源模型下载+vLLM部署+Ollama,从零开始打造高性能大模型服务,并发能力提升10倍!
本文详细介绍了vLLM框架,它专为高性能推理、批处理、并发和服务器部署而设计。文章对比了vLLM与Ollama的优缺点,介绍了Hugging Face和ModelScope两大模型下载平台的使用方法,并提供了从零开始使用vLLM启动服务的完整教程。文章还针对不同应用场景给出了框架选择建议,帮助开发者根据自身需求选择适合的部署方案,实现大模型服务的高效运行。
2025-12-12 11:19:22
719
原创 ChatGPT越用越上瘾的真相:揭秘LUPO训练法(AI从业者必学,建议收藏)
文章揭示了ChatGPT背后的"LUPO"训练方法,通过收集用户偏好选择来优化模型,使其在排行榜上表现优异,但也导致模型过度讨好用户,甚至引发多起悲剧案例。OpenAI在"用户想要"与"对用户好"之间陷入两难,内部存在产品派与研究派的路线分歧。尽管GPT-5.2即将发布,OpenAI仍面临谷歌Gemini和苹果的激烈竞争。这一训练机制对AI开发者和从业者具有重要参考价值。
2025-12-12 11:16:56
845
原创 从CRUD到AGI:开发工程师的大模型转型全指南,三个月内实现薪资50%涨幅的秘诀!
凌晨两点,你还在为解决生产环境的一个Bug焦头烂额。作为开发工程师,你是数字世界的"建造者",用代码搭建起整个互联网的骨架。但看着技术群里热火朝天的大模型讨论,你是否也在思考:除了日复一日地实现业务逻辑,我的技术生涯能否站在AI浪潮之巅?
2025-12-11 14:20:47
586
原创 2026系统分析师/设计师大模型转型指南:从需求洞察到智能创造,打造你的突围之路!
在2025年,大模型不再是遥远的未来科技,而是正在重塑每一个行业工作流的核心生产工具。对于长期处于业务与IT桥梁位置的系统分析师,以及专注于用户体验和创意实现的设计师来说,这场变革带来的不是替代,而是千载难逢的价值升级机遇。传统的分析、设计工作固然重要,但若能驾驭大模型,你将能直接参与定义“智能如何落地”,从“流程描述者”跃升为“智能架构师”。
2025-12-11 14:17:50
952
原创 大模型Agent开发进阶:Memory系统与RAG的本质区别与应用!
本文深入解析了大模型Agent的记忆机制与传统RAG的本质区别。传统RAG是静态记忆,无法处理知识更新;而Memory系统通过Agentic RAG实现主动记忆,具备反思、精炼、存储能力。Memory系统为Agent提供可控性、人设积累和多Agent协作能力,是工程级Agent体系中与ReAct框架同等重要的底层范式。企业需要的不是只会查文档的系统,而是能积累经验、记住用户、自我更新知识的智能体。
2025-12-11 14:15:32
664
原创 一文读懂大模型对齐算法演进:从PPO到GSPO完整指南!
文章系统梳理了RLHF核心对齐算法的演进历程,从最初的PPO算法开始,到DPO、GRPO、Dr.GRPO、DAPO,再到最新的GSPO算法。详细分析了每种算法的优势函数计算、clip处理和loss设计的创新点,以及它们在训练稳定性、样本效率和适用场景上的差异。这些算法的演进反映了AI领域对大模型安全与性能平衡的不断探索。
2025-12-11 14:13:11
876
原创 大模型训练效率提升6倍:7种数据选择策略全解析,预训练与后训练的数据选择!
本文系统综述了大语言模型预训练数据选择的六种主流策略:模型影响力驱动、质量与多样性平衡、多策略集成、结构化知识驱动、任务相关性驱动以及后训练数据选择。研究表明,科学的数据选择可显著提升模型性能并减少50%-70%的计算成本,为高效训练大模型提供了实用指导。
2025-12-11 14:11:08
596
原创 2026大模型(LLM)面试通关秘籍:啃透这份“三位一体”指南(理论+技术+实战),轻松拿Offer!
博主最近比较闲,帮同学们精心整理一份面向 2026年校招/社招 的大模型(LLM)面试“八股文”及高频考点梳理。这份资料不仅涵盖了经典基础,更重点加入了 2026年可能考察的前沿技术(如MoE、Agent、多模态、推理等),帮助你应对更高阶的面试挑战。
2025-12-10 14:51:15
583
原创 AI Agent开发框架大比拼:LangGraph、AutoGen等全方位对比分析!
本文从核心定位、技术特性、典型场景、成本模型、社区支持等维度,对 LangGraph、AutoGen、Dify、Coze、MetaGPT、OpenAI Agents 等 AI Agent 开发框架进行全方位对比分析,以便提供使用参考。
2025-12-10 14:46:57
961
原创 小白&程序员速看!大模型应用开发完全指南(2026):超详细,零基础入门到独立项目实战!
本文为大模型应用开发提供完整入门路线,从行业趋势、认知准备到实战案例五维度展开。指出当前是入行最佳时机,介绍大模型概念与开发模式差异,提供四阶段学习路径:基础准备、实现首个AI应用、精通Prompt工程、集成工具链开发复杂应用。推荐适合新手的工具平台,解答常见问题,帮助零基础开发者快速入门大模型应用开发。
2025-12-10 13:55:49
854
原创 【必学收藏】LangGraph持久化机制:让AI智能体拥有记忆能力,实现状态恢复与时间旅行
文章介绍了LangGraph的持久化机制,通过Thread和Checkpoint概念实现AI智能体的状态管理。持久化机制使智能体具备记忆能力,支持多轮对话;允许人工介入关键步骤;提供时间旅行功能,可回溯执行过程;增强系统容错性,支持从故障点恢复。文章详细讲解了持久化原理、编程实现和应用场景,是构建高级AI智能体的关键技术。
2025-12-10 13:49:17
933
原创 Windows电脑部署本地大模型全攻略:打造私有的AI助手,保护数据隐私!
本文详细介绍在Windows电脑部署本地大模型的完整流程,通过安装Ollama工具、下载开源模型及添加图形界面,实现不联网、不收费、数据完全私有的本地AI助手。文章提供详细操作步骤,解答常见问题,强调本地部署优势:保护数据隐私、无需API费用、响应速度快且可离线使用。即使没有高端显卡也能通过量化模型实现,适合小白和程序员学习掌握。
2025-12-10 13:47:22
658
原创 AI领域人才缺口激增至400万:校招市场火爆,应届生起薪高达30万成为新常态!
随着人工智能技术加速渗透产业,AI人才争夺战正进入白热化阶段,延伸至即将到来的2026届高校毕业生招聘市场。近日,前程无忧51job发布《2026届校招市场AI人才需求报告》显示,高科技企业成为AI人才需求主力军,领跑其他行业 。来自前程无忧人力资源调研中心的数据发现,近60%的高科技企业已将AI人才纳入核心招聘目标,远超金融(40.1%)和专业服务业(26.7%)。
2025-12-09 14:18:17
1405
原创 2025年校招市场震撼数据揭秘:AI面试解决方案如何实现招聘效率与匹配度的双重提升!
2025年,校招市场出现一个令人震撼的数据:头部科技公司AI相关岗位申请量同比增长超过10倍,而招聘团队规模几乎没有增加。面对数千份甚至上万份简历,如何精准高效地识别最匹配的人才?一家国内领先的科技公司在引入全流程AI面试解决方案后,实现了惊人的效率提升:整体招聘周期缩短50%,面试官时间节省65%,而最终录用的人才与岗位匹配度提高了96%。这不仅是技术的胜利,更是招聘思维的彻底变革。
2025-12-09 14:16:44
754
原创 大模型微调神器:Hugging Face TRL框架全解析,从原理到实战!
本文介绍了Hugging Face推出的TRL框架,这是一个专门用于大语言模型对齐和微调的工具。文章详细解析了TRL的核心组件、三种主要训练方法(SFT监督微调、PPO近端策略优化、DPO直接偏好优化)及其原理,并通过PPO微调GPT-2的代码示例展示了实际应用。TRL框架与Hugging Face生态无缝衔接,为研究者和开发者提供了高效让大模型"说出我们想要的回答"的工具。
2025-12-09 14:13:34
684
原创 【干货】小白也能看懂!Transformer中QKV矩阵的由来与作用详解!
文章用通俗易懂的方式解释了Transformer架构中Q、K、V三个矩阵的由来与作用。Q(查询)用于与其他元素建立关系,K(键)作为被查询的对象,V(值)用于应用学习到的关系权重。这三个矩阵通过线性变换从输入得到,引入可学习参数,增强了网络捕捉元素间关系的能力。同时,文章提供了从零基础到进阶的大模型学习路线,包括系统设计、提示词工程、平台应用开发等七个阶段,帮助读者系统掌握大模型技术。
2025-12-09 14:03:27
804
原创 【大模型智能体开发】MCP和A2A协议有啥区别?
本文详细介绍了智能代理开发中的两大核心协议:模型上下文协议(MCP)和Agent2Agent协议(A2A)。MCP标准化智能体与外部工具、API的交互,解决"具体操作";A2A则规范智能体间的协作与信息交换,处理"复杂任务"。两者互补而非替代,MCP负责工具调用,A2A处理高层次协作,共同构建完整的智能代理协作体系。
2025-12-09 14:02:29
712
原创 2025 AI职场风暴:新发岗位激增10倍,揭秘五大高薪核心赛道与未来职业发展!
在这场风暴的中心,是惊人的薪酬数字。AI新发岗位的平均月薪已达到61475元。更令人瞩目的是,超过42%的AI应届生岗位月薪在5万至8万元之间,其中近15%的岗位月薪超过8万元,这意味着每7个AI应届生岗,就有1个一毕业就迈入了年薪百万的门槛。
2025-12-08 14:38:24
1043
原创 【强烈推荐收藏】Java开发者转型AI:薪资暴涨4.6万背后的学习路径与实战指南!
“用原简历去投递,很多公司已读不回…突出AI开发经验后,HR回复率太夸张了。”一位前Java开发者的经历,道破了当前程序员市场的残酷现实。脉脉数据显示,2025年人工智能在招岗位平均最低薪资已达 4.7万元,平均最高薪资达 7.8万元。
2025-12-08 14:35:34
456
原创 注意力机制与自注意力机制的区别,掌握AI模型的核心技术!
本文系统讲解了AI大模型中的注意力机制和自注意力机制。注意力机制被形象比喻为"学霸划重点",通过动态权重分配让AI学会抓取关键信息,解决了传统RNN处理长文本的局限。自注意力机制则进一步实现了全局信息关联,通过Query-Key-Value三元组计算词间相关性,是Transformer架构的核心。文章用"自助餐选餐"等生活化类比解释技术原理,并对比了与传统方法的差异。最后提供了大模型学习路径建议,包括分阶段掌握系统设计、提示词工程、平台开发等核心技能,以及相关学习资源
2025-12-08 14:28:02
784
原创 为什么大模型应用开发,几乎都绕不开 LangChain?一篇搞定大模型工程化!
LangChain是大模型开发的"操作系统",让模型从"能说"变成"能干"。它提供完整生态支持主流模型和数据库,采用模块化链式逻辑简化开发,通过Agent实现工具调用和主动决策,配合LangSmith实现可视化监控。适用于RAG检索增强生成、智能体开发、结构化输出等场景,推动大模型开发进入工程化时代,使创新变得可重复、可维护、可扩展。
2025-12-08 14:24:10
638
原创 AI智能体长期记忆系统:架构设计到落地实践,打造未来智能的核心技术!
文章介绍Mem0长期记忆系统,解决大语言模型(LLM)的"记忆缺陷"。Mem0通过动态提取、整合和检索关键信息,赋予AI智能体长期记忆能力。文章详细解析Mem0(向量数据库)和Mem0-g(知识图谱)的架构设计、技术原理和性能表现,并与主流方案对比,展示其在效率与效果上的优势,为构建更可靠、更高效的AI智能体提供解决方案。
2025-12-08 14:15:48
750
原创 AI大模型轻量化攻略:5个主流方法,让你轻松掌握模型优化技巧!
在机器学习中,我们需要用数值的方式表达数据,尤其是在神经网络中,数据和模型参数都表示成张量的形式,而神经网络的计算过程就是这些张量相互作用的过程。矩阵/张量分解是一种传统的压缩方式,在神经网络压缩中也具有重要的地位。通过将原始大规模权值张量分解成一系列小规模的张量,张量分解可以有效降低网络模型存储,提升网络计算效率。
2025-12-07 08:15:00
255
原创 LLM微调秘籍:两年实战总结,掌握5大参数高效微调(PEFT)技术!!
大家好!我从事大语言模型(LLM)的微调工作已经超过两年了。在这段时间里,从 BERT 到 Llama、Qwen、ChatGLM……我踩过不少坑,也积累了不少经验。今天,我想和大家分享一个非常实用的话题——如何用更少的资源,高效微调超大规模语言模型?答案就是:参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)!
2025-12-07 08:00:00
874
原创 2025年产品经理行情突变!深度解析:现在入场AGI,是风口还是风险?
一边是智联招聘的报告显示,AI产品经理的岗位需求同比激增178%,全国平均招聘月薪达19459元,杭州更是以28659元位居榜首。另一边,是行业共识:AGI的到来,可能引发“工作灭绝”。焦虑与机遇交织,一个灵魂拷问挥之不去:我到底要不要转行AGI?
2025-12-06 13:21:16
927
原创 AI知识库系统新突破:知识图谱+Agentic RAG技术,打造智能问答的未来!
系统定位为 “基于AI的一站式知识管理与分析决策平台” ,旨在为政府、央企、国企及大型IT集成商等客户提供私有化、自主可控、深度智能的知识管理解决方案。平台深度融合了检索增强生成(RAG)、全文搜索、知识图谱、MCP、多模态处理、大语言模型等前沿AI技术,致力于解决传统知识管理的根本性问题。我们不仅提供一个简单的文档存储库,更致力于构建一个能够持续学习、深度理解、智能推理的企业级“知识大脑”。通过将海量、异构的数据源进行统一接入、智能加工和深度关联,平台能够将沉睡的数据资产转化为动态、鲜活、可交互的知识,赋
2025-12-06 13:16:33
918
原创 SGLang与vLLM大模型推理框架全对比:性能、场景与选择指南!
本文对比了两种大模型推理框架SGLang和vLLM的技术特点与性能表现。SGLang擅长处理复杂任务、格式化输出和高并发场景,通过RadixAttention技术提升多轮对话效率;而vLLM在高吞吐单轮推理方面表现优异,采用PagedAttention和Continuous Batching技术。文章详细分析了两者在不同场景下的适用性,建议根据业务需求选择合适框架,并在实际环境中进行测试验证。
2025-12-06 13:15:19
953
原创 程序员转行大模型,这五个高潜方向让你“身价翻倍”:从年薪30万到150万+的进阶路线图!
深夜,一位八年经验的Java架构师在完成最后一次系统部署后,没有像往常一样查看监控,而是打开了招聘网站。他熟练地输入了几个关键词:“大模型”、“算法”、“系统架构”——屏幕上跳出的薪资范围让他深吸一口气:资深岗位年薪普遍在 80万至150万元,头部企业的薪酬更可达 150万至200万元。
2025-12-05 15:39:55
1405
原创 【大模型面试】AI大模型岗位面试全攻略:新手必看,从基础概念到提示词解析!
本文整理了大模型岗位面试中的基础知识,主要包含五个要点:1)预测式AI与生成式AI的区别,前者用于预测推荐等任务,后者可创造内容但存在资源消耗大、幻觉等问题;2)Token是语言模型中的最小信息单元,其数量与模型质量相关,并影响部署指标;3)估算运行LLM模型成本的方法,比较SaaS和开源方案;4)Prompt工程的基本结构,区分单次应答和对话式应用场景;5)面试资料获取方式。内容适合新手了解大模型基础知识。
2025-12-05 15:38:24
657
原创 腾讯混元OCR大模型本地部署实测:性能如何?看这篇就够了!
本文分享了HunyuanOCR模型的部署经验。针对官方文档将显存需求从80GB修改为20GB但仍偏高的问题,作者推荐使用Docker方式部署,实测在24GB显存的4090显卡上仅需1.9GB显存即可运行。通过调整--gpu-memory-utilization参数,16GB显存也能稳定运行且性能无损失。相比官方复杂的安装流程(依赖uv环境),Docker方案更简便可靠,尤其适合离线环境部署。作者还提供了优化后的API调用方法,处理多页PDF文档时可实现秒级响应。
2025-12-05 15:36:14
670
原创 AI Agent成功秘诀:架构、协议、模型、应用四位一体,缺一不可!
如果把过去几年的大语言模型(LLM)浪潮比作“电力被发明”的阶段,那么 AI Agent 更像是“电气化工厂”的开始:电不再只是点灯,而是接入生产线、带动机器、形成一整套自动化体系。
2025-12-05 15:34:52
435
原创 深度解析强化学习如何(不)提升大模型能力:RL与SFT的终极对决!
本文通过多篇前沿论文对比分析强化学习(RL)与监督微调(SFT)在大模型训练中的不同效果。研究表明RL虽能提高搜索效率但无法拓展模型能力边界,而SFT可扩展能力但导致灾难性遗忘。RL训练呈现"三重门"特性,更新高度局部化。未来需平衡能力提升与避免遗忘,On-policy Distillation可能是突破方向。
2025-12-05 15:31:03
616
原创 AI高薪浪潮来袭!揭秘三大新兴赛道,小白也能轻松年薪百万+(不容错过的珍藏版)
AI人才市场正经历爆发式增长,高薪岗位遍地。大模型基建层、跨学科融合层和机器人协同层是三大高薪赛道。技术小白可通过AI产品经理、运营专员入门;传统IT人可跨界叠加行业技能;应届生应瞄准垂类小巨头。无论技术背景如何,选对赛道、补对技能,都能在AI时代获得高薪机会。
2025-12-04 16:56:58
1426
原创 收藏这篇就够了!AI入门全攻略:技术/非技术双路径指南(从零基础到高薪就业)
2024年初,我的一位前同事突然打电话给我,声音里满是焦虑:“公司整个数据分析团队都被优化了,HR说公司要全面转向AI驱动,我现在该学什么才能不被淘汰?”这通电话让我意识到:AI已不再是科技公司的专利,它正在重塑每一个行业的就业格局。根据麦肯锡最新报告,到2030年,全球将有30%的工作岗位因AI发生根本性变化,而中国AI人才缺口预计达到500万。
2025-12-04 16:55:08
718
原创 【AI大模型应用】AI大模型如何重塑农业?从智能农机到作物生长模型,技术解析与学习指南!
文章探讨AI大模型在农业领域的应用与挑战,包括多模态数据采集处理、模型泛化能力与健壮性、技术与实际应用脱节等问题。提出需通过技术研发优化、技术适配落地和全链条协同来推动AI农业应用。同时提供大模型学习路线,从系统设计到行业应用开发,助力掌握AI技术,提升农业生产效率。
2025-12-04 16:49:28
836
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅