- 博客(1528)
- 收藏
- 关注

原创 揭秘大模型概念与应用:探讨其在不同场景下的落地实践
大模型是什么?大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,大模型通常是指具有数百万到数十亿参数的神经网络模型。大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,大模型通常是指具有数百万到数十亿参数的神经网络模型。这些模型需要大量的计算资源和存储空间来训练和存储,并且往往需要进行分布式计算和特殊的硬件加速技术。大模型的设计和训练旨在提供更强大、更准确的模型性能,以应对更复杂、更庞大的数据集或任务。
2024-08-28 11:26:39
1428
1

原创 医疗与大模型:重塑未来医疗生态的营销之道
医疗与大模型的结合正成为行业发展的重要趋势。面对这一机遇和挑战并存的局面,我们应积极拥抱变革、勇于创新实践。通过精准定位、打造案例、拓展合作和创新模式等多种手段相结合的方式,共同推动医疗大模型在行业的广泛应用和普及发展。那么,我们该如何学习大模型?作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。至于能学习到多少就看你的学习毅力和能力了。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
2024-06-13 13:38:20
2722
1
原创 GPT-5发布!OpenAI这次带来了什么?是惊喜还是惊吓?
OpenAI发布重磅升级的GPT-5,这是首个融合推理能力和快速响应优势的统一AI模型。GPT-5在编程、文本处理、健康问答等方面表现突出,幻觉率显著降低至1.6%,并首次向免费用户开放。新模型支持四种个性模式,提供更自然的交互体验,Pro订阅用户可无限制使用更强大的GPT-5 Pro版本。在多项基准测试中,GPT-5超越Claude Opus、Gemini等竞品,尤其在编程能力上达到74.9%的SWE-bench得分。OpenAI表示这是迈向AGI的重要一步,CEO奥特曼称其为"世界上最好的模型
2025-08-08 10:12:28
485
原创 大模型是怎么“学习”知识的?Transformer架构揭秘,简单到像教小孩识字!
神经网络模仿人脑神经元的工作方式,通过多层结构处理信息:输入层接收数据,隐藏层提取特征,输出层给出结果。它通过"损失函数"发现错误,利用"反向传播"算法调整参数(如梯度下降法寻找最优解),并采用Dropout机制防止死记硬背。就像学生用错题本改进学习,神经网络通过不断试错建立认知模型,最终实现语音识别、图像分类等智能功能。这种基于数学的学习方式,正在推动AI技术革新,掌握相关技能将成为未来职场的重要竞争力。
2025-08-08 09:47:42
326
原创 程序员转行,除了卖保险还能干嘛?
对于考虑职业转型的程序员,技术积累是最佳跳板。产品经理方向可发挥技术优势,考取NPDP认证快速入门;项目管理岗位需补充PMP认证等管理技能;技术讲师适合擅长知识传授者;创业需要技术+商业思维结合;自媒体则适合有表达欲的技术人。文末提供AI大模型系统学习资源,包含7阶段课程体系及实战项目,助力技术人拓展职业边界。
2025-08-07 16:16:15
613
原创 8道题定乾坤?大模型算法岗面试高频知识点详解,看这一篇就够了!
本文介绍了深度学习中的多个核心概念和方法:1. CNN网络结构及其优势;2.常见优化器(SGD、Adam等)及应用场景;3.激活函数和损失函数;4. LSTM与RNN的区别;5. U-Net上采样方式及棋盘效应;6. BatchNorm与LayerNorm区别;7. AI大模型学习路径,包括7个阶段的学习内容和实战项目。文章还提供了大模型学习资源和面试资料获取方式。
2025-08-07 15:13:23
469
原创 多模态大模型VS视觉大模型,它俩谁才是‘视觉王者’?谁会被淘汰谁会崛起?
多模态大模型与视觉大模型各有专长,前者擅长图文跨模态任务(如生成描述、问答),后者精于专业视觉处理(如图像分类、质检)。两者差异源于训练目标不同:视觉模型专注图像特征学习,多模态模型则需兼顾文本对齐。在工业检测、图像修复等纯视觉任务上,专用视觉模型表现更优;而在需要图文交互的场景中,多模态模型不可替代。未来趋势是两者协同合作而非替代,分别处理精细视觉任务和跨模态复杂需求。
2025-08-07 14:38:18
683
原创 干货|LangChain文本分割器实战指南,代码示例全公开!
文本分割器是RAG应用中的关键组件,用于将长文档分割成适合大语言模型处理的片段。文章介绍了文本分割器的作用:控制上下文长度、提高检索准确性和保持语义完整性。重点讲解了LangChain中的RecursiveCharacterTextSplitter递归分割器,以及MarkdownHeaderTextSplitter等专用分割器的使用方法。文章还演示了如何自定义文本分割器,并强调合理选择分割策略对RAG效果的重要性。最后提供了AI大模型学习的资源获取方式,包括学习路线图、商业化方案和视频教程等。
2025-08-07 14:02:32
563
原创 律师不学AI?小心被时代落下!这些技能你还不赶紧get?
《AI时代律师的生存法则》摘要:2024年法律行业正经历AI革命,传统律师面临三重挑战:AI合同审查效率超人工60倍,案源流失率达60%,法官开始采用AI辅助判案。调查显示,掌握AI工具的律师薪资可达传统律师4倍,红圈所已将AI技能设为招聘硬指标。95后律师通过AI实现月接案量40倍增长,印证"AI原生律师"的崛起。司法部拟将AI应用能力纳入2025年律师年检,职业转型窗口期仅剩12个月。文章指出,未来律师将分化为"AI超级个体"和"数字佃农"两个
2025-08-07 13:39:46
503
原创 RAG优化实战:排查AI问答崩溃的常见原因及解决方案!
本文针对企业级AI应用中RAG技术面临的三类核心问题:用户查询意图模糊、检索策略单一、结果排序欠佳,提出了一套完整的优化方案。方案包含三个关键步骤:1)查询转换阶段通过意图识别和动态扩展将模糊查询转化为精准检索指令;2)混合检索阶段结合向量检索与关键词检索优势,构建多路召回架构;3)智能重排阶段采用Cross-Encoder模型对候选文档进行精细化排序。文章详细介绍了各环节的技术实现,包括BERT分类模型、BM25算法优化、BGE-Reranker应用等,并分享了哈啰出行的实战案例。
2025-08-07 11:22:33
398
原创 OpenAI开源大模型,为何本地部署失败,线上实测却被批“很水”?
OpenAI推出开源大模型GPT-OSS系列,包含120B和20B两个版本。120B适用于高性能场景,支持单卡H100运行;20B适合边缘设备,16GB内存即可运行。模型开源免费、支持商业用途,提供3档算力调节和微调功能。官方测试显示性能接近付费版本,但在实际HTML生成测试中表现欠佳。部署方式多样,但vLLM运行可能遇到GLIBC兼容性问题。最后提及中文AI学习资源,包含大模型全栈开发课程和资料包。
2025-08-07 09:38:57
471
原创 AI人才高薪抢人大战,年薪百万的都有!!!普通人如何精准入局?
春招旺季,AI人才争夺战白热化。小米、华为等企业高薪招聘大模型工程师,年薪最高达120万元,要求硕士以上学历及3年以上经验。智联招聘数据显示,AI工程师岗位增速近70%,平均月薪超2万元。DeepSeek等技术热潮推动行业需求激增,企业纷纷加码AI人才招募,初创公司及大厂同步调整战略,转向技术迭代或商业化落地。与此同时,AI渗透催生职场变革,软技能价值凸显,企业HR加速智能化转型。专家指出,AI将重塑就业结构,但人机协同可创造新机遇,未来需平衡技术替代与技能升级。
2025-08-06 15:41:57
1331
原创 2025年,想进大厂AI岗?这份最新面试题+解析,据说很多面试官都在看!
本文探讨了大模型技术的关键问题与解决方案,涵盖架构设计、注意力机制、上下文处理、分词器差异、对话角色区分、嵌入模型对比等核心议题。通过50个技术问答,系统分析了BERT/GPT类模型的优缺点、自注意力机制的优势、RAG技术应用、多模态模型训练方法,以及模型微调、知识蒸馏、强化学习等进阶技术。文章特别关注了实际应用场景中的挑战,如长文本处理、领域适应、安全合规等,并提供了混合检索、分步生成、模块化智能体等实用解决方案。最后介绍了大模型学习路径和商业化应用方案,为开发者提供从入门到进阶的全方位指导。
2025-08-06 15:06:49
662
原创 一文吃透Transformer:不谈数学,全靠类比,小白也能轻松理解!
本文用生活化比喻讲解Transformer的工作原理。相比传统顺序处理的RNN/LSTM,Transformer能同时关注全局信息,实现"阅读理解"而非"听力理解"。其核心是Self-Attention机制,通过QKV向量让每个词决定关注谁,并采用多头注意力从多角度理解文本。文章还解释了token化、位置编码、编码器-解码器结构等关键概念,以及上下文窗口限制和生成过程。Transformer的优势在于并行计算、全局理解和强大扩展性,使其成为现代AI的基础架构。
2025-08-06 11:54:06
618
原创 再不开源就晚了?OpenAI感受压力,两大重磅GPT-OSS模型横空出世!
OpenAI重磅开源两款大语言模型GPT-OSS-120B和20B,采用Apache2.0协议商用授权。两大模型采用MoE架构和原生4位量化技术,120B版本性能接近o4-mini,20B版本媲美o3-mini,单卡即可运行。模型原生支持工具调用、代码执行等功能,获HuggingFace等主流平台支持。这是OpenAI五年来首次开源语言模型,既是对开源社区的回应,也意在构建开发者生态闭环。虽然存在幻觉率较高等不足,但这一举措显著降低了AI开发门槛,重塑了开源大模型竞争格局。
2025-08-06 11:29:07
577
原创 干货|10个Python必备技巧,让你的编码效率直线飙升!
在Python生态中,精炼高效的代码结构始终是开发者的核心追求。本文深入剖析10个Python经典操作,从底层原理到优化实践,助你解锁Pythonic编程范式,摆脱重复劳动的枷锁。
2025-08-06 10:51:44
536
原创 AI医生真的来了?京东健康AI从问诊走向抗癌,临床深水区意味着什么?
京东健康入选《2025医健可持续创新案例推荐榜》,凭借其医疗AI技术实力,推动普惠医疗发展。其核心产品"京医千询2.0"大模型已从基础问诊扩展到复杂疾病辅助诊疗,通过整合临床数据、影像分析和基因检测等功能,实现精准医疗建议。目前,京东健康AI已覆盖C端用户健康管理、B端医院服务和D端医生辅助决策全场景,日均服务数千万人次。公司以"三引擎+四模型"架构持续深耕,致力于通过AI技术缩小医疗资源差距,让优质医疗服务更可及。
2025-08-06 10:24:11
655
原创 揭秘大模型优化:模型剪枝技术,如何“剪”出高效性能?
本文深入探讨了模型剪枝技术在AI领域的应用与发展。文章将剪枝比作"AI减肥术",通过去除神经网络中不重要的参数或结构,有效降低计算量和存储成本。作者详细介绍了结构化/非结构化剪枝等不同方法,分析了其在边缘设备部署、大语言模型优化等场景的应用价值,并提供了基于PyTorch的剪枝代码示例。文章指出,剪枝技术虽可能影响精度,但能显著提升推理速度、降低部署成本,未来发展将趋向软硬协同优化和自动剪枝。最后强调,剪枝不仅是效率优化手段,更是推动AI普惠化的重要技术。
2025-08-06 09:37:44
550
原创 产品经理学习避坑指南:从入门到实践,这些学习路径、书籍、课程、网站,看完少走弯路!
想入行产品经理,却被海量学习资料搞得晕头转向?不知道从哪里开始学?别担心!今天这篇文章,将为你系统梳理学习产品经理的正确路径,推荐超实用的书籍、课程和网站,帮你快速搭建知识体系,少走弯路,高效成长!
2025-08-05 18:12:04
749
原创 大模型面试想通关?别刷别的了,这本刷题书,面试前请务必“翻烂”!
《百面大模型》是一本针对大模型领域的系统性面试指南,由一线技术专家编写。全书精选100道高频面试真题,覆盖预训练、微调、推理优化等核心知识点,采用问答形式深入解析技术原理和工程实现。该书特色在于:1)基于真实大厂面试题整理,命中率高;2)从底层逻辑出发构建知识体系,而非简单刷题;3)包含RLHF、DPO等前沿技术对比分析。附有代码示例和难度分级,适合从入门到进阶的开发者系统学习。多位行业专家推荐本书既能应对面试,又能提升实操能力,是大模型领域难得的全栈式学习资料。
2025-08-05 18:02:03
893
原创 【图文详解】传统RAG vs Agentic RAG,实战差异一目了然!
本文对比了传统RAG(检索增强生成)与AgenticRAG(智能体式RAG)两种技术范式。传统RAG采用线性"检索-生成"流程,结构简单但处理复杂查询能力有限。AgenticRAG引入智能体概念,通过查询重写、工具选择、循环迭代等机制,显著提升了处理多跳推理和复杂任务的能力。文章详细分析了两者在流程设计、工具使用、自我评估等方面的核心差异,指出AgenticRAG代表了RAG技术向更智能、更灵活方向发展的趋势。最后还提供了大模型AI的系统学习路径和资源。
2025-08-05 14:18:58
699
原创 阿里巴巴通义千问发布QwenImage,布局AI图像新赛道!
阿里巴巴通义千问团队开源20B参数图像生成模型Qwen-Image,突破文本渲染与图像编辑两大技术难点。该模型在GenEval、DPG等基准测试中表现优异,尤其擅长处理中文文本渲染,能精准生成店铺招牌、书法对联等复杂场景。模型支持多种艺术风格转换,并具备物体增减、文字替换等编辑功能,已上线QwenChat平台并开源至ModelScope和HuggingFace。不同于依赖网络爬取数据的模型,Qwen-Image采用授权素材训练,兼顾版权合规与商业需求,为设计、广告等行业提供创作工具。技术报告和演示案例显示,
2025-08-05 13:42:49
606
原创 Coze开源了,但为何你的AI Agent还是“孤岛”?
字节跳动AI平台Coze近期宣布开源,采用Apache-2.0协议允许商业使用。开源版本包含AI模型管理工具和Agent底座,但目前功能较为基础,仅支持18个插件且存在本地文档解析等问题。相比Dify等竞品,Coze在开源协议上更开放但功能较少。其采用Go语言和微服务架构,适合高并发场景,但也提高了技术门槛。此次开源是字节完善开发者生态的重要举措,需解决插件授权、云服务绑定等问题才能吸引更多开发者。当前AI Agent领域竞争激烈,Coze若想突围需持续优化开放能力。
2025-08-05 10:48:27
588
原创 从作文批改到虚拟助教,生成式AI正在如何改变我们的教育?
生成式人工智能正在深刻变革教育模式,通过16个真实课堂案例分析,研究发现AI主要通过四条路径重塑教学:促进多元认知活动、生成多模态资源、实现个性化学习和构建参与式课堂。研究提炼出六种实践模式,如人机协同互评等,证实AI能有效提升教学交互质量,推动教育向智能化、个性化转型。该技术不仅作为教学工具,更能与教师协同创新教学方法,为教育数字化转型提供新范式。关键词:生成式AI、课堂重塑、个性化学习、多模态资源、教育创新
2025-08-05 10:17:14
1009
原创 手把手教你实现AI智能体记忆!8种策略原理、优劣对比,附详细代码实战,提升你的Agent能力!
当前AI大模型面临的关键挑战之一是其有限的记忆力,这导致在长对话和多轮交互中出现信息遗忘的问题。本文系统性地介绍了8种主流记忆管理策略,从简单的全量记忆到复杂的分层记忆系统,为解决这一挑战提供了全面方案。每种策略都包含原理说明、实现代码、优劣分析和适用场景:1)全量记忆保留所有信息但消耗资源;2)滑动窗口仅保留最近对话;3)相关性过滤智能筛选重要内容;4)摘要压缩节省记忆空间;5)向量数据库支持语义检索;6)知识图谱实现结构化记忆;7)分层记忆模仿人类记忆系统;8)类OS机制模拟内存调度。
2025-08-05 09:44:09
744
原创 既能动手实践,又能搞懂原理:Dify Agent教程+LLM输出机制图解全在这
本文详细解析了大语言模型处理用户提问的技术流程,从提问输入到答案生成的完整过程。当用户输入一句话时,模型首先将其分词并转换为数字编码,通过嵌入层转换为向量表示。随后经过多层Decoder进行深度理解,最终由语言模型头生成概率分布,通过选词机制输出最可能的回答。整个过程基于深度学习架构、海量训练数据和概率计算,而非真正理解语义。文章还介绍了系统学习大模型的七个阶段课程体系,涵盖从基础理论到行业应用的全栈技能。
2025-08-04 16:41:45
731
原创 想自己造个AI小帮手吗?这篇Dify智能体Agent教程,手把手带你搞定
本文介绍了如何在Dify平台构建图片生成智能体:1)创建Agent应用并选择大模型;2)配置Stability AI工具并获取API密钥;3)编写提示词自动生成图像。作者还分享了大模型学习路径,涵盖系统设计、提示工程、开发应用等7个阶段的学习资源,包括路线图、视频教程和面试题等,可通过指定渠道免费获取。文章最后展示了用该智能体生成"拿书女孩"图片的简单示例,并预告后续将尝试更复杂的工作流应用。
2025-08-04 16:39:23
510
原创 程序员必看!普通程序员到底该不该转型AI大模型?这篇帮你理清思路!
随着AI大模型技术爆发式发展,程序员向AI转型成为热门趋势。面对职业瓶颈和高薪机遇,程序员需权衡转型AI大模型的可行性。大模型凭借通用性、泛化能力和强大性能成为技术前沿,但需跨越算法、数据处理等技术门槛。转型成功率取决于学习路径、行业适配及企业支持,建议通过系统学习机器学习、参与实战项目逐步切入。资料显示,掌握大模型全栈开发能力可显著提升职场竞争力,涵盖微调、多模态应用等核心技能。现开放免费AI大模型学习资源包(含路线图、商业案例、视频教程等),助力开发者高效转型。
2025-08-04 11:10:54
1398
原创 【百度一面】高频考点MLA,究竟该怎么答?面试经验大公开!
DeepSeek技术推动了MLA的发展,成为AI领域重要突破。本文分享作者十年互联网企业经验总结的大模型学习路径,包含7个阶段系统课程:从模型设计、提示词工程到行业应用开发。课程提供全栈能力培养,覆盖数据处理、模型训练及部署等实战技能,并附赠全套学习资源(路线图、商业方案、视频教程及面试题库)。所有资料通过CSDN平台免费共享,助力开发者掌握大模型核心技术。👉 关键词:AI大模型、深度学习、职业培训、免费资源
2025-08-04 10:45:10
236
原创 实战来了!Coze工作流一键生成公众号文章教程,手把手教你玩转AI写作!
本文详细介绍了基于AI大模型的完整工作流设计,分为两个主要分支:短视频文案提取改写和主题网络搜索改写。流程包括选择器节点、视频下载、语音转文本、大模型仿写、标题优化、飞书文档生成等模块,并提供了详细参数设置和代码实现。重点讲解了如何通过大模型将原始内容改写成1500字的公众号文章,包括格式规范、内容要求和技术实现细节。同时分享了AI大模型学习路线和资源获取方式,涵盖7个学习阶段和多种实战应用场景。整个工作流通过变量聚合节点实现多分支统一输出,最终生成可直接使用的文档内容。
2025-08-04 10:16:59
981
原创 国外AI医疗哪家强?上市企业清单+市场分析,一篇看懂全球风向!
综合全球视角来看,AI医疗创新主要集中在北美地区,特别是美国,同时欧洲、加拿大和澳大利亚也展现出强劲的发展势头。这些公司涵盖了广泛的业务应用,从AI驱动的药物发现和先进影像诊断,到智能健康管理平台和机器人手术辅助。当前市场格局的显著特点是,既有专注于AI技术的初创企业,也有将AI深度整合到其核心产品中的大型成熟医疗技术公司。整个市场呈现出高度的活力,持续的技术创新、战略合作以及对AI驱动的效率和精准度的追求,正在重塑医疗健康产业的价值链。
2025-08-04 09:52:36
868
原创 太强了!蚂蚁新招:告别复杂提示词,AI秒懂你的个性化需求!
蚂蚁通用人工智能研究中心提出AlignXplore方法,通过强化学习让AI具备归纳推理能力,从用户行为中动态学习个性化偏好。该方法采用两阶段训练:先用"导师模型"生成高质量教学案例进行冷启动,再通过强化学习优化推理能力。实验显示,AlignXplore在个性化任务上表现优于基线模型15.49%,具有高效、泛化性强和鲁棒性好的特点。这项研究探索了如何让AI从"规则执行者"转变为"模式发现者",为构建真正理解用户的高情商AI提供了新思路。
2025-08-04 09:31:03
253
原创 Anthropic指南:如何构建多智能体研究系统详解
Anthropic分享了其多智能体研究系统的构建经验,为开发高级AI代理提供了实践指南。文章指出,多智能体系统在处理开放式研究任务时展现出显著优势,通过任务分解和并行处理能投入更多计算资源。系统采用"指挥者-工作者"架构,指挥代理协调任务,工作者代理并行执行搜索。在评估方面,文章建议结合小样本测试、LLM评分和人工审查。同时,文章坦诚讨论了实际部署中的挑战,包括高计算消耗、错误累积、调试困难等问题。这些经验为AI代理的产品化提供了宝贵参考。
2025-08-03 09:00:00
570
原创 搞定!用两天时间在Cloudflare部署开源工具站,免费拥有自己的在线工具集!
本文介绍了在Cloudflare上部署开源在线工具站的过程。该项目基于Vue+TS开发,支持Docker部署和二次开发,包含开发运维、文本处理、图片编辑等实用工具。作者分享了本地运行编译的注意事项(需修改QRCodeStyling.ts文件),并详细说明了Cloudflare Pages的部署步骤,包括环境变量配置等。文章还提供了AI大模型学习路线推广内容,包含七个阶段的学习计划和104G免费资源包。项目支持PC/H5自适应,未来计划增加注册登录和AI工具功能。
2025-08-03 08:00:00
803
原创 深入理解RAG与智能体:为何说智能体可视为RAG的一种高级实现形态?
本文探讨了RAG(检索增强生成)与智能体技术在大模型应用中的区别与联系。RAG通过检索外部数据增强模型输出,而智能体不仅具备数据获取能力,还能通过工具与环境进行双向交互(如电商下单)。智能体比RAG更灵活,能自主选择工具处理多源数据(如企业内部数据库),而RAG通常局限于预设检索方式。两者虽在数据增强功能上有交集,但智能体(如AgenticRAG)应用范围更广。文章还提供大模型学习路线,涵盖系统设计、提示词工程、多模态开发等7阶段内容,并附赠100+商业化方案及学习资源,助力开发者掌握垂直领域模型训练与AI
2025-08-02 09:00:00
642
原创 别只知道Prompt了!详解AI新趋势:上下文工程到底怎么玩?
随着AI技术的发展,上下文工程(Context Engineering)正逐步取代传统的提示工程(Prompt Engineering)成为LLM应用开发的核心。上下文工程强调构建动态系统,为模型提供结构化信息和工具,而非仅优化提示措辞。其关键优势在于能整合多源数据(用户输入、历史交互、外部工具等)并确保信息格式适合LLM处理。实践证明,当前LLM应用的多数问题源于上下文缺失或格式不当。新兴工具如LangGraph和LangSmith为上下文工程提供技术支持,使开发者能精准控制模型输入输出。掌握上下文工程将
2025-08-02 08:00:00
455
原创 AI对就业的影响:哪些职业面临冲击?行业趋势与岗位分析科普
AI技术正深刻改变就业市场,白领工作首当其冲。研究显示财务、翻译、软件开发等岗位最易被AI替代,而蓝领工作相对安全。财务人员借助AI工具大幅提升效率,教育领域AI可提供个性化教学,客服行业则面临简单咨询被AI取代的挑战。就业市场呈现两极分化趋势,高端人才和低技能岗位需求增加。面对AI冲击,人类应发挥情感价值、创造力等优势,学会与AI协同工作。专家建议职场人士主动学习新技能,挖掘不可替代的价值,以适应这场就业变革。
2025-08-01 15:05:25
1571
原创 LLM新手别错过!这两本国内外大模型领域的顶级著作,入门必读!
大模型是当前最前沿的研究与应用方向。本文推荐两本适合初学者的优质书籍:《大语言模型》由中国人民大学团队编写,提供全面的技术框架和配套代码库;《带你从零构建大模型》则从理论到实践,手把手教读者构建自己的大语言模型。文章还提供了AI大模型学习路线、商业化方案、视频教程、PDF书籍等丰富资源,涵盖从入门到进阶的完整学习路径,包括系统设计、提示词工程、平台开发等七大阶段,并附赠100套商业方案、200本电子书和面试题库等资料包,可通过扫码免费获取。
2025-08-01 14:38:50
740
原创 DevOps大升级!从单体到LLM,三大范式重塑软件交付进化史!
本文系统梳理了DevOps从应用到智能的范式演进,划分为Application DevOps、DataOps和ModelOps三大领域。云原生微服务架构通过GitOps实现了自动化部署;DataOps从数据仓库发展到数据网格,实现去中心化数据治理;ModelOps则从MLOps演进为LLMOps,专门应对大语言模型的工程挑战。文章指出,三大领域共同构成了数据价值阶梯,推动从功能交付到智能创造的持续进化。最后提供了AI大模型学习路线图,涵盖从系统设计到商业落地的完整知识体系。
2025-08-01 13:51:58
870
原创 美股最大IPO诞生:90后辍学生缔造,市值直逼4000亿,股价狂飙250%,全靠AI!
全球云端设计协作平台Figma于7月31日登陆纽交所,首日股价暴涨250%,市值突破563亿美元,成为2025年美股最大IPO。Figma由90后辍学生Dylan Field于2012年创立,凭借云端实时协作和AI驱动设计工具(如Figma Make)迅速崛起,服务45万付费客户,覆盖95%的《财富》500强企业。招股书提及AI超150次,凸显其以AI为核心的增长战略,2024年收入达7.49亿美元(同比增长48%)。创始人Field个人财富或增值数亿美元,公司研发投入超7亿美元,员工持股将批量造富。
2025-08-01 11:15:52
633
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人