最新12种GraphRAG技术全面评测

6月有两篇关于GraphRAG技术评测的最新论文,涉及12种GraphRAG技术:HippoRAG、HippoRAG2、LightRAG、Fast-GraphRAG、RAPTOR、MGraphRAG、KGP、GraphRAG 、G-Retriever、DALK、ToG、GFM-RAG

图片

GraphRAG 是一种扩展的 RAG 范式,通过构建图结构来组织背景知识,其中节点代表实体、事件或主题,边代表它们之间的逻辑、因果或关联关系。它不仅检索直接相关的节点,还会遍历图以捕获相互连接的子图,从而发现隐藏的模式。

GraphRAG vs RAG

图片

GraphRAG 是否真的有效,以及在哪些场景下图结构能为 RAG 系统带来可衡量的好处?

厦大和港理工提出的GraphRAG-Bench基准测试框架,旨在全面评估 GraphRAG 模型在分层知识检索和深度上下文推理中的表现:

图片

图片

实验部分对 GraphRAG 和传统 RAG 进行了全面对比,得出以下结论:

  1. 生成准确性(Generation Accuracy):GraphRAG 在复杂推理、上下文总结和创造性生成任务中表现优于 RAG,但在简单事实检索任务中,RAG 的表现更好或相当。

图片

  1. 检索性能(Retrieval Performance):GraphRAG 在复杂问题上显示出优势,能够连接分散在不同文本片段中的信息,这对于多跳推理和全面总结至关重要。

图片

  1. 图复杂性(Graph Complexity):不同的 GraphRAG 实现生成的索引图在结构上存在显著差异,例如 HippoRAG2 生成的图更为密集,节点和边的数量远超其他框架。

图片

港理工和腾讯优图提出的GraphRAG-Bench更侧重于评估 GraphRAG 在特定领域推理中的表现。该基准测试包含 1018 个涵盖 16 个学科的大学水平问题,涉及多跳推理、复杂算法编程和数学计算等多种任务类型。

图片

图片

评估了九种最先进的 GraphRAG 方法,包括 RAPTOR、LightRAG、GraphRAG、G-Retriever、HippoRAG、GFM-RAG、DALK、KGP 和 ToG,得出关键结论:
  1. GraphRAG 的优势:在复杂推理和多跳任务中,GraphRAG 显著优于传统 RAG 方法,尤其是在需要深度上下文理解和逻辑推理的任务中。
  2. 任务类型的影响:GraphRAG 在不同任务类型中的表现存在差异。例如,在数学和伦理学领域,其表现不如在计算机科学领域。
  3. 推理能力的提升:GraphRAG 方法不仅提高了生成的准确性,还显著提升了模型的推理能力,使其能够生成更符合逻辑的解释。

图片

图片

图片

GraphRAG技术的图构建评估
  • RAPTOR 的图构建时间最长,但令牌消耗最少,因为它仅通过 LLM 生成总结。
  • KGP 的图构建时间较短,但令牌消耗较高。
  • GraphRAGLightRAG 的图构建时间较长,且令牌消耗最多,因为它们生成了额外的描述信息。
  • G-RetrieverHippoRAG 的图构建时间最短,且非孤立节点比例最高(约 90%),表明它们在图构建质量上表现最佳。

图片

GraphRAG技术知识检索评估
  • GFM-RAG 的索引时间最短,因为它不构建传统的向量数据库。
  • RAPTOR 的平均检索时间最快,因为其树结构能够快速定位信息。
  • HippoRAGGFM-RAG 的检索时间较短,分别利用了 GNN 和 PageRank 算法。
  • GraphRAG 的检索时间较长,因为它需要利用社区信息进行检索

图片

图片

https://arxiv.org/pdf/2506.02404GraphRAG-Bench: Challenging Domain-Specific Reasoning for Evaluating Graph Retrieval-Augmented Generationhttps://arxiv.org/pdf/2506.05690When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented Generation

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### GraphRAG 技术介绍 GraphRAG 是一种基于知识图谱的技术,旨在解决传统 RAG (Retrieval-Augmented Generation) 方法中存在的局限性[^1]。具体来说,GraphRAG 利用大型语言模型(LLM),根据输入的语料库构建知识图谱。此图谱不仅包含了原始文档的信息,还融合了社区摘要以及图形机器学习的结果,从而增强了查询时的提示效果。 #### 工作原理 当接收到用户请求时,GraphRAG 不仅依赖于简单的文本匹配算法来查找相关信息,而是利用预先建立的知识图谱来进行深层次的理解和推理。这种方法使得 GraphRAG 能够好地处理复杂问题,并提供加精准的回答[^3]。 ```python def graph_rag_query(query): """ Simulate a query process using the GraphRAG system. Args: query (str): User's input question Returns: str: Answer generated by combining knowledge from KG and LLMs """ kg_results = retrieve_from_knowledge_graph(query) llm_output = generate_with_llm(kg_results + query) return refine_answer(llm_output) ``` ### 应用领域 由于其强大的信息检索能力和高效的成本效益,在多个行业中展现出广泛的应用潜力: - **企业决策支持**:帮助管理层快捷准确地获取所需商业情报; - **学术研究辅助**:加速科研人员查阅资料的速度并提升论文写作的质量; - **教育辅导工具**:为学生提供个性化的在线答疑服务; 值得注意的是,尽管 GraphRAG 展现出了卓越的表现力,但在实际部署过程中仍需充分考虑到诸如数据质量控制、计算资源配置优化等问题以确保系统的稳定性和安全性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值