“ 我们要学会使用第三方的大模型平台,而不是什么都从0开始 ”
大模型从出现以来,其巨大的成本问题一直都是压在很多企业头上的一座山;但大模型作为一项基础设施,理论上应该和现有的基础设施相结合,比如说云计算平台。
根据云计算的思想,除了实现快速部署迁移以及庞大的网络洪峰之外;其次最重要的一点就是提升资源的利用率;比如对很多公司来说,流量洪峰主要都集中在某些时间段,大部分时间的流量都比较平稳。
因此,如果按照最高峰值部署服务器,那么就会造成巨大的浪费;因此,云计算的用武之地就出现了;因为云计算快速动态扩/缩容的机制,导致其能够更好地利用空闲资源。
云上的大模型
大模型由于其巨大的体量,以及参数和数据;对一家企业来说,要想设计训练出一个属于自己的模型,就需要购买大量的算力资源——也就是GPU。
但GPU的价格问题使得企业面临着巨大的成本压力;因此,购买或租用别人的算力,就成了一个比较好的选择。在需要算力的时候就租用别人的算力,再不需要的时候就可以把算力给释放掉;这样既节省了成本,也提升了资源的利用率。
而由于云计算的诸多特性,比如快速扩容,集群,调度等等;使得把大模型搬到云上就是一个很好的选择。
今天在看腾讯云平台的时候,发现其提供了大量与大模型训练,微调,部署相关的功能;其不但提供了算力支持,同时还封装了很多与大模型训练,微调,部署相关的工具包,加速器等工具。
其上不但可以部署自定义的大模型,而且其官方还提供了大量的预制基础模型镜像;用户可以通过这些镜像做上层的训练与部署开发。
如上图所示,这种功能大大降低了大模型的训练和微调成本;不但是资金成本,同样还包括技术成本;因为其封装了大量的基础功能,只需要通过简单的命令或API以及SDK集成即可使用。
这种方式,不但降低了企业的使用成本,对于对大模型技术感兴趣的个人技术人员,或者学习大模型技术的人;也同样让他们有机会设计和训练部署属于自己的大模型。
当然,提供这种云上大模型服务的企业不仅仅腾讯一家;国内还包括阿里,华为等多家云服务商;而国外包括微软,谷歌等都提供了类型的功能模块,方便大家使用。
因此,特别是对一些大模型应用领域的创业者来说,这种云上模型解决了底层模型的很多问题,节省了大量的时间;使得创业者可以专注于自己的产品和功能实现;而不用把大量的时间浪费在大模型的底层架构上。
所以说,对企业和创业者来说,一定要弄清楚自己的定位;到底是想做技术,还是做产品,还是做服务;不同的定位,需要关注不同的技术点和业务环节。
因此,随着社会的发展,社会分工变得越来越细;每个人都应该找准自己的定位,然后深入的钻研下去;而不是在不同的领域里反复横跳。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。