埃森哲发布的《未来的制造:超自动化工厂蓝图》报告,基于对全球制造业的深度调研,提出了2040年超自动化工厂的愿景,并为制造业企业实现这一目标提供了行动指南。报告指出,未来工厂将通过AI、机器人、数字孪生等技术实现高度自动化和智能化,企业需在劳动力转型、自动化升级、AI优化和数字化建设四大领域采取行动,以应对劳动力短缺、技术部署缓慢等挑战,并在竞争激烈的市场中脱颖而出。
一、2040年超自动化工厂愿景
报告描绘了2040年超自动化工厂的蓝图,工厂将具备自我优化能力,实现机器人、数字孪生和人工监督的无缝融合。关键要素包括全自动化仓库、自动导引车辆(AGV)、自主移动机器人(AMR)、基于生成式AI的自主学习机器、数字运营孪生和智能互联制造单元等。这些技术将使工厂能够实时预见潜在干扰、灵活应变并优化生产,实现高度自主的运行状态。
二、四大行动领域
(一)劳动力转型
劳动力转型是实现超自动化工厂的关键。企业需应对资深技术工人退休潮和新生代劳动力补充乏力的双重挑战。管理者需将知识管理、数据分析和数据驱动决策融入日常工作流程,同时克服培训成本高、员工担心失业等障碍。企业应明确未来职业机遇,提供职业发展通道,建立新型人才发展模式,支持持续技能培训。未来工厂职工将从直接生产转向间接生产,需适应人机互动与共进的工作常态。
(二)实现自动化
自动化是中期优先要务,但多数管理者仍聚焦于初级目标,如仓库自动化和生产过程实时同步。企业需规划迈向未来工厂的路线图,选择适合的自动化模式,如大规模量产工厂、模块化工厂、矩阵式工厂、机器直出产品型工厂和车间工厂。人形机器人的应用测试已取得显著成效,但速度、成本和系统集成复杂度等难题仍未解决。
(三)利用AI优化
AI是推进工厂运营全方位发展的关键因素。短期内,管理者优先考虑维护、修理和大修(MRO)流程、物流优化及生产效率提升。但未来工厂运营将全面围绕弹性、敏捷性和适应速度展开,要求AI自主连接设备、智能分配任务并优化作业顺序。企业需加快AI应用步伐,提升数据能力,加强数字核心,支持数据采集、整合和利用。AI驱动的模拟模型可预测需求波动、瓶颈或延误等风险,支持企业调整产能并协同供应链。
(四)数字化铸就未来工厂
数字化是打造超自动化工厂的基石,但制造业整体数字化成熟度仍处于较低水平。企业需打造强大的数字核心,支持数字孪生、工业物联网和边缘计算等关键技术,消除信息孤岛,提升面向制造的设计(DfM)能力。从预测型生产规划转向需求驱动型制造,将成为工厂动态适应需求波动、供应链中断和运营约束的关键。企业需采用事件溯源微服务架构,支持动态调整配置的工厂需求,并将数字孪生技术从孤立试点扩展到整个工厂生态系统。
三、案例研究
报告中提到的案例研究包括某全球食品饮料企业通过“人才+流程+技术”三位一体战略推动智能制造规模化落地,以及雷诺通过革新生产体系迎接未来挑战。这些案例展示了企业在劳动力转型、自动化升级、AI优化和数字化建设方面的成功实践,为其他企业提供了借鉴。
结语
到2040年,高度自动化的工厂将不再需要传统的“管理”,而是智能化的“协同运作”。AI将实时管理生产流程,数字孪生将在实际执行每项决策前提供模拟演示,而人形机器人将在无需人工干预的情况下完成适应调整。制造业将从预测驱动型转向完全自主、需求响应型的生态系统。真正的竞争优势将取决于企业无缝整合这些技术,并将其扩展为一体化智能系统的能力。
这份完整版的报告(PDF版)已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
这份完整版的报告(PDF版)已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】