今年世界人工智能大会(WAIC 2025)最让人兴奋的,不是又多了几个参数惊人的大模型。当你看遍800家企业的展台、上百种机器人后,那个最强烈的感受会告诉你:AI,终于不“飘”在天上了。一股“深度应用”的浪潮,正让技术真正落地,创造价值。
它不再是隔空炫技,而是真的被用起来了,实实在在地解决着问题。
在加速产业走向AI深度应用这条道路上,国内巨头京东无疑按下了“加速键”。大会期间,京东不仅将其大模型品牌全面升级为JoyAI,更向全球开发者亮出了一张源自复杂业务场景的王牌——正式开源其企业级多智能体平台 JoyAgent-JDGenie。
它致力于解决开发者快速构建多智能体应用的“最后一公里”问题,其核心理念是提供一个端到端的、轻量化的完整产品,而非仅仅是一个SDK或框架。
本文将为你详细解读这款“开箱即用”的多智能体产品的核心能力,并提供完整的本地部署教学,带你全面拥抱这个强大的AI Agent工具👇
01 | JoyAgent-JDGenie:企业级多智能体“全能选手”
JoyAgent-JDGenie 是京东JoyAI大模型体系下的核心产品。不同于许多依赖特定云生态(如阿里云百炼、火山引擎)的工具,它是一个相对轻量且完整的解决方案。它不仅在GAIA等权威榜单上性能超越众多知名产品,更重要的是,它源自于京东在零售、物流、供应链等真实、严肃且复杂场景中的大规模实践。
✅ 端到端完整产品: 开箱即用,对于输入的任务(如“给我做一个最近美元和黄金的走势分析”),可以直接生成网页或PPT报告,而非仅提供开发框架。
✅ 100%全栈开源: 完整开源了前端、后端、框架、引擎及核心子智能体(报告生成、代码、PPT、文件处理等),赋予开发者极高的自由度和二次开发能力。
✅ 轻量化与高兼容性: 无需强制绑定特定云服务,可与多种模型(如DeepSeek)轻松集成,部署更灵活。
✅ 经过实战检验: 已在京东内部超过1.4万个智能体的庞大规模下得到验证,保证了其在复杂场景下的稳定性和可靠性。
✅ 其核心优势清单如下
- 支持多种智能体设计模式(React模式、Plan-and-Executor模式等)。
- 具备高并发的DAG(有向无环图)执行引擎,实现极致的执行效率。
- 子智能体(Agent)和工具可轻松插拔、自由扩展。
- 支持HTML、PPT、Markdown等多种格式的文件交付。
- 具备跨任务级别的记忆能力(Cross task workflow memory)。
02 | 上手实践:本地部署 JoyAgent-JDGenie
现在,让我们动手将JoyAgent-JDGenie完整部署到本地。
✅ 部署指南(一):Docker 一键启动 (推荐)
-
1. 准备工作:
- 硬件:CPU 2核及以上,内存 4GB及以上。
- 软件:安装好 Docker 并启动服务。
-
2. 获取源码:
git clone https://github.com/jd-opensource/joyagent-jdgenie.git
cd joyagent-jdgenie
-
3. 配置模型服务:
- 后端配置: 手动更新 genie-backend/src/main/resources/application.yml 文件,填入你的大模型 base_url, apikey, 和 model 等信息。
- 工具配置: 手动更新 genie-tool/.env_template 文件,填入如 OPENAI_API_KEY, SERPER_SEARCH_API_KEY 等(如果使用DeepSeek,则配置 DEEPSEEK_API_KEY 等)。
-
4. 构建镜像:
docker build -t genie:latest .
-
5. 启动与访问:
docker run -d -p 3000:3000 -p 8080:8080 -p 1601:1601 --name genie-app genie:latest
-
6. 部署成功后,通过浏览器访问 http://localhost:3000/ 即可。
部署若遇问题,可参考官方视频:【5分钟使用deepseek启动开源智能体应用joyagent-genie-哔哩哔哩】 https://b23.tv/8VQDBOK
✅ 部署指南(二):手动启动服务
方案A:一键脚本启动 (推荐)
-
1. 环境准备: 确保已安装 JDK 17 和 Python 3.11。
-
2. 执行脚本: 在项目根目录下,依次执行:
# 1. 检查所有依赖和端口占用情况
sh check_dep_port.sh
# 2. 一键启动所有服务
sh Genie_start.sh
提示: 这种方式最便捷。使用 control+c 可一键停止所有相关服务。
方案B:手动分步启动 (适用于问题排查) 此方案需要手动启动四个服务:前端、后端、Tools 和 MCP。
Step 1: 环境准备:
- Java > 17: 确保已安装并正确配置 JAVA_HOME 环境变量。
- pnpm > 7: 用于安装前端依赖。安装方法见 pnpm官网 https://pnpm.io/zh/installation。
- Python (推荐3.11): 用于启动工具服务。
Step 2: 启动前端服务 (UI)
- 打开一个新终端:
cd joyagent-jdgenie/ui
sh start.sh
- 当看到 Local: http://localhost:3000/ 输出时,表示前端启动成功。
Step 3: 启动后端服务 (Backend)
- 另外打开一个终端:
cd joyagent-jdgenie/genie-backend
sh build.sh
sh start.sh
- 当看到 [INFO] BUILD SUCCESS 时表示编译成功。你可以通过 tail -f genie-backend_startup.log 查看日志。
Step 4: 启动Tools服务
- 另外打开一个终端:
cd joyagent-jdgenie/genie-tool
pip install uv
uv sync
source .venv/bin/activate
- 首次启动需执行以下命令初始化数据库:
python -m genie_tool.db.db_engine
- 配置环境变量并启动服务:
cp .env_template .env
# 编辑 .env 文件, 填入你的 SERPER_SEARCH_API_KEY 等
uv run python server.py
Step 4: 启动MCP服务
- 另外打开一个终端:
cd joyagent-jdgenie/genie-client uv venv source .venv/bin/activate sh start.sh
03 | 进阶玩法:二次开发与定制
JoyAgent-JDGenie 的强大之处在于其高度的可扩展性。你可以轻松添加外部工具或创建全新的自定义智能体。
✅ 如何添加外部MCP工具?
- 1. 修改配置文件:
mcp_server_url: "http://ip1:port1/sse,http://ip2:port2/sse"
- (可选)在 ui/.env 文件中,可以修改前端请求后端的路径。
- 在 genie-backend/src/main/resources/application.yml 文件中,添加你的 mcp_server 服务地址,多个地址用逗号分隔。
-
2. 重启服务:
sh start_genie.sh
-
3. 开始对话:
例如,添加一个12306查票工具后,你可以提问:“规划7月7天2人从北京出发去新疆的旅行计划,并查询相关火车票信息”。Genie在规划后会自动调用你新增的MCP工具查询车票,并最终输出完整报告。
✅ 如何新增自定义子Agent?
-
1. 实现BaseTool接口:
- 创建一个Java类,实现 BaseTool 接口,并定义工具的名称、描述、参数和核心执行逻辑。
/**
* 工具基接口
*/public interface BaseTool {
String getName(); // 工具名称String getDescription(); // 工具描述MaptoParams(); // 工具参数Object execute(Object input); // 调用工具
}
// 天气智能体示例public class WeatherTool implements BaseTool {
@Overridepublic String getName() {
return "agent_weather";
}
@Overridepublic String getDescription() {
return "这是一个可以查询天气的智能体";
}
@Overridepublic MaptoParams() {
return "{\"type\":\"object\",\"properties\":{\"location\":{\"description\":\"地点\",\"type\":\"string\"}},\"required\":[\"location\"]}";
}
@Overridepublic Object execute(Object input) {
return "今日天气晴朗";
}
}
-
2. 注册新的Agent:
- 在 com.jd.genie.controller.GenieController#buildToolCollection 方法中,添加代码来引入你的自定义Agent。
WeatherTool weatherTool = new WeatherTool();
toolCollection.addTool(weatherTool);
-
3. 重启服务:
sh start_genie.sh
小结
回归本文的起点,AI的价值在于“深度应用”。JoyAgent-JDGenie正是为此而生的实践产物。通过本文的介绍,我们可以清晰地看到它的核心价值所在:
首先,它是一个经过实战检验、开箱即用的完整产品。这解决了许多开源项目停留在框架或SDK层面,开发者仍需大量工作的痛点。其源自京东复杂业务的背景,是其稳定可靠的最好背书。
其次,它为开发者提供了全面的灵活性和掌控力。从最简单的Docker部署,到推荐的一键脚本,再到用于精细化排错的分步启动,不同的部署方式满足了从快速体验到深度开发的全方位需求。
最后,它拥有一个强大且易于扩展的内核。无论是通过配置接入外部MCP工具,还是通过实现BaseTool接口用Java创造全新的原生智能体,都展示了其作为平台“基座”的强大潜力。
总而言之,JoyAgent-JDGenie通过提供一个真正完整、灵活且可扩展的开源产品,切实降低了高质量AI Agent的开发门槛,让每一个开发者都能更专注于业务创新本身。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓