大模型算法工程师经典面试题————为什么现在的主流大模型都是 decoder-only 架构?

大模型算法工程师经典面试题————为什么现在的主流大模型都是 decoder-only 架构?

本人是某双一流大学硕士生,也最近刚好准备参加 2024年秋招,在找大模型算法岗实习中,遇到了很多有意思的面试,所以将这些面试题记录下来,并分享给那些和我一样在为一份满意的offer努力着的小伙伴们!!!

面试题

为什么现在的主流大模型都是 decoder-only 架构?

相比encoder-decoder架构,只使用decoder有什么好处吗?

标准答案

首先概述几种主要的架构:以BERT为代表的encoder-only、以T5和BART为代表的encoder-decoder、以GPT为代表的decoder-only,还有以UNILM为代表的PrefixLM(相比于GPT只改了attention mask,前缀部分是双向,后面要生成的部分是单向的causalmask),可以用这张图辅助记忆:

要回答该问题,需要从自回归(autoregressive)生成方法、模型架构和训练效率和应用需求等多个角度进行回答:

1. 自回归(autoregressive)生成方法
  • 原理:Decoder-only架构的模型,比如GPT系列,主要运用自回归生成策略。这意味着在生成每一个词汇时,模型都会参考之前生成的所有词汇。这种机制非常适合需要逐步构建序列的任务,如文本创作和对话系统。

  • 优势

  • 连贯性与上下文一致性:自回归生成方式确保每个新生成的词汇都能考虑到前面的上下文,从而保证输出文本的连贯性和上下文一致性。

  • 高效稳定的文本生成:通过逐个词汇生成的方式,Decoder-only模型避免了一次性预测整个序列的需求,这不仅使生成过程更为稳定,同时也提高了效率。

2. 模型架构和训练效率
  • 原理:与Encoder-Decoder 架构相比,Decoder-only 模型具有更简洁的架构。Encoder-Decoder 架构主要用于那些需要对输入序列进行编码的任务,例如机器翻译;而 Decoder-only 模型则直接专注于解码(生成)输出序列。

  • 优点

  • 简化架构设计:仅包含一个 Decoder 模块,这种精简的设计使得模型在实现和调试方面更加简便。

  • 提高训练效率:由于模型中只涉及单一模块的训练,因此训练过程更为高效,有效减少了所需的计算资源和时间。

3. 应用需求驱动
  • 原理:多种自然语言处理应用,如文本生成、对话系统和自动补全等功能,其核心需求在于生成连贯的文本序列,而非将一个序列转换为另一个序列(例如在翻译任务中)。

  • 优点

  • 适合生成任务:Decoder-only模型特别适用于直接生成任务,能更好地符合实际应用场景的需求。

  • 高度灵活:该架构可以灵活应对不同长度和复杂程度的文本生成任务,展现出更强的适应能力。

4. 预训练和微调策略
  • 原理:Decoder-only模型一般采用自回归预训练的方法,通过预测后续词汇来学习大规模数据集中的语言结构和模式。这种方法不仅简单高效,还易于应用于更大规模的数据集上。

  • 优势:

  • 高效的预训练:自回归预训练策略在捕获语言模式及上下文信息方面表现出色,有助于提高模型在生成任务上的性能。

  • 灵活的微调:在针对特定下游任务进行微调时,Decoder-only模型能够通过简便的任务适应策略迅速调整,以满足具体任务的需求。

5. 计算资源优化
  • 原理:在大规模模型训练过程中,高效利用计算资源至关重要。Decoder-only模型通过精简计算组件的数量,实现了计算资源使用的优化。

  • 优势:

  • 节约计算资源:仅需要训练Decoder模块,因此对计算资源的需求较低。

  • 易于扩展:这种模型架构更便于扩展至更大的参数规模,能充分利用现有的硬件资源来进行更大规模的训练。

其他观点

在知乎上有一个很经典的问题《为什么现在的LLM都是Decoder only的架构?》(https://www.zhihu.com/question/588325646),很多大佬针对该问题做了很好的回答,这里稍微总结:

  1. @苏剑林 苏神强调的注意力满秩的问题,双向attention的注意力矩阵容易退化为低秩状态,而causal attention的注意力矩阵是下三角矩阵,必然是满秩的,建模能力更强;

  2. @yiī 大佬强调的预训练任务难度问题,纯粹的decoder-only架构+next token predicition预训练每个位置所能接触的信息比其他架构少,要预测下一个token难度更高,当模型足够大,数据足够多的时候,decoder-only模型学习通用表征的上限更高

  3. @mimimumu 大佬强调,上下文学习为decoder-only架构带来的更好的few-shot性能:prompt3.和demonstration的信息可以视为对模型参数的隐式微调[2],decoder-only的架构相比encoder-decoder在in-context learning上会更有优势,因为prompt可以更加直接地作用于decoder每一层的参数,微调的信号更强;

  4. 多位大佬强调了一个很容易被忽视的属性,causal attention(就是decoder-only的单向4attention)具有隐式的位置编码功能[3],打破了transformer的位置不变性,而带有双向attention的模型,如果不带位置编码,双向attention的部分token可以对换也不改变表示,对语序的区分能力天生较弱。

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。

AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。


这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

四、LLM面试题

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值