Unsloth微调环境搭建与LLaMA 3.1-8B模型微调实践指南

本文将详细介绍如何使用Unsloth框架进行LLaMA 3.1-8B模型的微调,帮助您快速构建微调环境,并了解微调流程的基本步骤。本教程适合初学者,旨在帮助您在短时间内实现自己的专属模型微调。对于更复杂的微调参数和细节设置,将在后续文章中进一步阐述。

文将涵盖以下内容:

1. Unsloth环境搭建: 指导您从零开始搭建Unsloth微调环境。

2. 微调第一个LLaMA模型: 一步步教您如何通过Unsloth框架对LLaMA 3.1-8B进行微调,涵盖关键配置。

Unsloth环境搭建

最初,我在Windows 11环境下安装并运行了Unsloth,虽然安装过程顺利,但在模型微调过程中遇到了各种错误。尽管大部分问题都通过逐一解决了,但一些关键的GPU加速库仍然无法正常运行。这些库要求在Linux系统上才能正常运行并充分发挥其性能。

由于对Linux系统不够熟悉,我尝试通过编译工具在Windows上重新编译这些库,但问题依然未能解决。最终,我选择通过Windows上的WSL(Windows Subsystem for Linux)安装Ubuntu的方式来解决这些兼容性问题。这样既避免了完全切换到Linux的麻烦,又能够使用Linux环境来进行模型微调。

第一步:在WINDOWS上通过WSL安装UBUNTU

如果您使用的是Linux操作系统(建议使用Ubuntu),可以跳过这一部分的内容,直接进入后续步骤。同时,确保您在Linux系统上安装了显卡驱动,以便正常使用GPU进行加速。

如果您在Windows上通过WSL安装Ubuntu,由于WSL是一种虚拟化技术,您无需在WSL的Ubuntu系统中再次安装显卡驱动。只要Windows宿主机上已经正确安装并配置了显卡驱动,WSL内的Ubuntu系统将自动使用这些驱动配置,支持GPU加速。

windows11系统下,进入命令行工具,执行如下指令,即可快速安装完Ubuntu:

wsl -install

从windows中进入Ubuntu系统,同样需要打开命令行,执行如下指令:

wsl -d ubuntu

初次登录,会要求输入一个新的用户名、密码:

后续登录系统,会直接进入,而不必每次都输入用户名和密码:

(base) C:\Users\username>wsl -d ubuntuwsl: 检测到 localhost 代理配置,但未镜像到
 WSL。NAT 模式下的 WSL 不支持 localhost 代理。
(base) root@WANG***-4090:/mnt/c/Users/username#

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈


第二步:升级系统相关组件

安装完ubuntu系统后,需要对相关的组件进行升级:

在这里插入图片描述

第三步:安装Anaconda

建议安装Anaconda,安装相关的python包会非常方便,同时也便于对python环境进行管理。

wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
sudo sh Anaconda3-2024.06-1-Linux-x86_64.sh

建议的安装目录:

/home/userName/anaconda3

安装完成之后需要手动将其加入到环境变量中。需要在~/.bashrc的文件尾部增加如下内容:

export PATH="/home/wangjye/anaconda3/bin:$PATH"

第四步:安装CUDA

这是最容易出错的过程,如果已经安装完驱动了,则需要在WINDOWS宿主机上运行命令 nvidia-smi 来查看硬件支持的CUDA版本,不论是WINDOWS还是LINUX一定要注意查看,不能安装错了。

最大的坑是选择了不被支持的CUDA版本(如CUDA 12.6),导致PyTorch及TensorFlow都无法兼容4090显卡。因此选择低于12.6版本的CUDA。在这里我安装的是稳定版本的12.1。

wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run
sudo sh cuda_12.1.0_530.30.02_linux.run

安装过程会中断N次,提示少这样那样的文件,少什么文件按提示装什么。

然后再次安装CUDA,直接安装完成。

安装完成之后,如果运行nvcc --version查看是否安装成功,这里提示找不到指令。主要原因是因为CUDA的安装路径没有写入环境变量中,需要对~/.bashrc文件进行编辑,以下内容视不同操作系统的安装路径而不同:

export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

再次运行nvcc --version时,提示的结果如下,代表安装完成 :

03-11
### PyQt 教程与文档资源 对于希望深入了解PyQt的技术人员来说,有多个高质量的教程和官方文档可以作为学习资料。 #### 中文教程 一份详尽的PyQt6中文教程提供了全面的学习材料[^1]。这份教程不仅涵盖了基础概念,还深入探讨了高级主题,适合不同层次的学习者。通过实际案例分析,帮助读者快速掌握PyQt的应用技巧。 #### 新手指南 针对初学者,《PyQt5新手教程》是一本不可多得的好书,全书超过七万的内容覆盖了从入门到精通所需的知识点[^2]。书中详细介绍了如何利用Python编写图形界面程序,并且特别强调了Qt框架下的信号与槽机制的重要性及其应用方法。 #### 官方开发文档 为了更进一步提高技能水平,可以直接查阅《PyQt5中文开发文档》,该文档包含了丰富的API说明以及实例演示,能够有效指导开发者解决具体问题并优化代码性能[^3]。 #### 实际项目实践 除了理论知识外,在实践中运用所学同样重要。例如,下面这段简单的Python脚本展示了怎样加载`.ui`文件中的设计元素并将其集成至应用程序中: ```python import sys from PySide6.QtWidgets import QApplication, QMainWindow from PySide6.QtCore import QFile from ui_mainwindow import Ui_MainWindow class MainWindow(QMainWindow): def __init__(self): super().__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) if __name__ == "__main__": app = QApplication(sys.argv) window = MainWindow() window.show() sys.exit(app.exec()) ``` 上述例子来源于Pyside6的相关介绍,但其核心逻辑同样适用于PyQt环境[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值