本文将详细介绍如何使用Unsloth框架进行LLaMA 3.1-8B模型的微调,帮助您快速构建微调环境,并了解微调流程的基本步骤。本教程适合初学者,旨在帮助您在短时间内实现自己的专属模型微调。对于更复杂的微调参数和细节设置,将在后续文章中进一步阐述。
文将涵盖以下内容:
1. Unsloth环境搭建: 指导您从零开始搭建Unsloth微调环境。
2. 微调第一个LLaMA模型: 一步步教您如何通过Unsloth框架对LLaMA 3.1-8B进行微调,涵盖关键配置。
Unsloth环境搭建
最初,我在Windows 11环境下安装并运行了Unsloth,虽然安装过程顺利,但在模型微调过程中遇到了各种错误。尽管大部分问题都通过逐一解决了,但一些关键的GPU加速库仍然无法正常运行。这些库要求在Linux系统上才能正常运行并充分发挥其性能。
由于对Linux系统不够熟悉,我尝试通过编译工具在Windows上重新编译这些库,但问题依然未能解决。最终,我选择通过Windows上的WSL(Windows Subsystem for Linux)安装Ubuntu的方式来解决这些兼容性问题。这样既避免了完全切换到Linux的麻烦,又能够使用Linux环境来进行模型微调。
第一步:在WINDOWS上通过WSL安装UBUNTU
如果您使用的是Linux操作系统(建议使用Ubuntu),可以跳过这一部分的内容,直接进入后续步骤。同时,确保您在Linux系统上安装了显卡驱动,以便正常使用GPU进行加速。
如果您在Windows上通过WSL安装Ubuntu,由于WSL是一种虚拟化技术,您无需在WSL的Ubuntu系统中再次安装显卡驱动。只要Windows宿主机上已经正确安装并配置了显卡驱动,WSL内的Ubuntu系统将自动使用这些驱动配置,支持GPU加速。
windows11系统下,进入命令行工具,执行如下指令,即可快速安装完Ubuntu:
wsl -install
从windows中进入Ubuntu系统,同样需要打开命令行,执行如下指令:
wsl -d ubuntu
初次登录,会要求输入一个新的用户名、密码:
后续登录系统,会直接进入,而不必每次都输入用户名和密码:
(base) C:\Users\username>wsl -d ubuntuwsl: 检测到 localhost 代理配置,但未镜像到
WSL。NAT 模式下的 WSL 不支持 localhost 代理。
(base) root@WANG***-4090:/mnt/c/Users/username#
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
第二步:升级系统相关组件
安装完ubuntu系统后,需要对相关的组件进行升级:
第三步:安装Anaconda
建议安装Anaconda,安装相关的python包会非常方便,同时也便于对python环境进行管理。
wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
sudo sh Anaconda3-2024.06-1-Linux-x86_64.sh
建议的安装目录:
/home/userName/anaconda3
安装完成之后需要手动将其加入到环境变量中。需要在~/.bashrc的文件尾部增加如下内容:
export PATH="/home/wangjye/anaconda3/bin:$PATH"
第四步:安装CUDA
这是最容易出错的过程,如果已经安装完驱动了,则需要在WINDOWS宿主机上运行命令 nvidia-smi 来查看硬件支持的CUDA版本,不论是WINDOWS还是LINUX一定要注意查看,不能安装错了。
最大的坑是选择了不被支持的CUDA版本(如CUDA 12.6),导致PyTorch及TensorFlow都无法兼容4090显卡。因此选择低于12.6版本的CUDA。在这里我安装的是稳定版本的12.1。
wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run
sudo sh cuda_12.1.0_530.30.02_linux.run
安装过程会中断N次,提示少这样那样的文件,少什么文件按提示装什么。
然后再次安装CUDA,直接安装完成。
安装完成之后,如果运行nvcc --version查看是否安装成功,这里提示找不到指令。主要原因是因为CUDA的安装路径没有写入环境变量中,需要对~/.bashrc文件进行编辑,以下内容视不同操作系统的安装路径而不同:
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
再次运行nvcc --version时,提示的结果如下,代表安装完成 :