
大模型入门到放弃
文章平均质量分 88
分享大模型相关知识
居7然
更多大模型知识 码上有模力
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
从零开始学大模型之大模型应用
本文介绍了大模型评测和RAG技术。在大模型评测方面,详细阐述了评测的重要性、主流评测数据集(如MMLU、GSM8K等)以及国内外评测榜单(如Open LLM Leaderboard、OpenCompass等)。在RAG技术部分,解释了其基本原理是通过检索外部信息增强生成质量,并给出了搭建简易Tiny-RAG框架的步骤,包括向量化、文档处理、检索和生成等核心模块。文章强调评测对衡量模型性能的关键作用,以及RAG技术在解决大模型幻觉问题、提升内容准确性方面的价值,为AI开发者提供了实用参考。原创 2025-09-08 17:04:38 · 481 阅读 · 0 评论 -
落地企业级RAG的实践指南
企业级RAG落地实践面临文档类型多样化和数据预处理两大核心挑战。文章详细解析了从PDF、Word等文档中提取文本、表格、图片等元素的方法,强调了元数据标准化的重要性,并介绍了文档分块策略。同时探讨了语义搜索的局限性和混合搜索的优势,以及处理表格和图片的三种技术方案(Table Transformer、Vision Transformer和OCR+Table Parser)。该指南为企业构建高效的检索增强生成系统提供了实用技术路线。原创 2025-09-08 16:57:39 · 538 阅读 · 0 评论 -
大模型DPO与PPO:一文看透关键差异
更多AI大模型开发都在这>><< >><<原创 2025-09-07 17:14:39 · 509 阅读 · 0 评论 -
美团大模型“龙猫”登场,能否重塑本地生活新战局?
美团推出大模型"龙猫",重塑本地生活服务格局 美团正式发布开源大模型LongCat-Flash(龙猫),采用混合专家(MoE)架构,实现高效推理与低成本输出(5元/百万token)。其性能在MMLU和CEval评测中表现优异,媲美国内头部模型。 在内部应用中,龙猫已作为AI编程助手、智能会议工具提升效率;在本地生活场景,则为商家提供智能营销建议,优化用户个性化推荐。美团CEO王兴提出"AI at work"、"AI in products"和自研大原创 2025-09-07 17:04:05 · 548 阅读 · 0 评论 -
一文看懂!Pre-Training、SFT、LoRA、RLHF的爱恨情仇
本文系统梳理了大模型训练中的四大关键技术:预训练(Pre-Training)、监督微调(SFT)、低秩自适应(LoRA)和基于人类反馈的强化学习(RLHF)。预训练为模型提供通用知识基础,SFT实现任务专业化适配,LoRA通过低秩矩阵实现高效微调,RLHF则优化模型输出的人类友好性。四项技术环环相扣,共同推动大模型性能提升,其中预训练和SFT奠定基础能力,LoRA解决微调效率问题,RLHF确保输出质量。理解这些技术的协同作用,对掌握大模型工作原理和优化方向具有重要意义。原创 2025-09-06 16:59:04 · 1177 阅读 · 0 评论 -
从零开始学大模型之大模型训练流程实践
本文介绍了使用Hugging Face Transformers框架进行大模型训练的实践流程。主要内容包括: Transformers框架的优势:模块化设计支持主流模型架构,内置分布式训练功能,集成预训练模型资源。 模型初始化方法:通过AutoConfig加载配置,使用AutoModelForCausalLM初始化模型,支持从零训练或加载预训练权重。 数据处理:结合datasets库处理训练数据,使用预训练tokenizer进行分词。 文章重点介绍了如何使用Transformers框架高效实现LLM的预训练原创 2025-09-05 17:16:30 · 832 阅读 · 0 评论 -
从零开始学大模型之动手搭建大模型
本文介绍了如何动手实现一个LLaMA2大模型。首先定义了模型超参数,包括维度、层数、注意力头数等,通过继承PretrainedConfig类来存储配置。然后构建了RMSNorm归一化层,用于稳定学习过程。接着详细讲解了LLaMA2的注意力机制实现,包括分组查询注意力和旋转嵌入技术。文章提供了完整的代码实现,涵盖模型配置、归一化层和注意力机制等核心组件,为读者搭建自定义大模型提供了实践指导。原创 2025-09-05 17:13:16 · 1136 阅读 · 0 评论 -
从零开始学大模型之大语言模型
摘要 大语言模型(LLM)是参数规模达数百亿以上、在超大规模语料上预训练的新型语言模型。与传统预训练语言模型(PLM)相比,LLM展现出四大核心能力:涌现能力(随规模增长突然出现的复杂任务处理能力)、上下文学习(无需微调即可通过示例完成任务)、指令遵循(理解并执行未见过的自然语言指令)和逐步推理(处理多步骤逻辑问题)。这些能力使LLM成为通向通用人工智能的重要途径,并推动NLP研究范式从"预训练-微调"转向"即时工程"。当前主流LLM如GPT-3、ChatGPT等通过原创 2025-09-04 16:45:12 · 1188 阅读 · 0 评论 -
从零开始学大模型之预训练语言模型
更多AI大模型开发都在这>><< >><<原创 2025-09-04 16:42:12 · 1407 阅读 · 0 评论 -
从零开始学大模型之Transformer 架构
本文介绍了Transformer架构中的核心组件——注意力机制。文章首先回顾了神经网络的发展历程,指出RNN在处理序列数据时的局限性,进而引出注意力机制的优势。详细解释了注意力机制中Query、Key、Value三个核心概念的计算原理,并通过字典查找的类比帮助理解。最后给出了注意力机制的数学公式和PyTorch实现代码,展示了如何通过矩阵运算实现注意力计算。文章为理解Transformer架构奠定了重要基础,内容涵盖理论推导和代码实践,适合AI开发者学习参考。原创 2025-09-03 17:17:39 · 966 阅读 · 0 评论 -
5大高效微调技术解析
本文介绍了5种高效微调大语言模型(LLM)的技术:LoRA通过添加低秩矩阵减少参数;LoRA-FA冻结部分矩阵节省内存;VeRA共享冻结矩阵并学习缩放向量;Delta-LoRA利用矩阵差异更新参数;LoRA+采用差异化学习率提升效果。这些方法显著降低了计算资源需求,使LLM微调更易实现。原创 2025-09-02 16:55:27 · 410 阅读 · 0 评论 -
大模型竟然数不清手指个数?
摘要 大模型在计数任务上频频翻车,如无法正确识别六指图片或统计重复字符。这一现象揭示了AI的认知短板,主要源于三方面原因:数据偏差导致对罕见情况识别不足;Transformer架构在嵌入维度、注意力机制上的技术限制;以及任务设计偏向通用目标而忽略特定需求。该问题在医疗、工业检测等关键领域可能造成严重后果。解决方向包括提升模型嵌入维度、优化注意力机制、改进分词策略,以及增加训练数据多样性。随着技术进步,克服这一短板将显著提升AI在专业领域的应用可靠性。原创 2025-09-01 19:43:12 · 727 阅读 · 0 评论 -
一文看懂!MCP、A2A、ACP、ANP协议选型全攻略
AI代理协议选型指南:四大协议对比分析 本文系统介绍了MCP、A2A、ACP、ANP四大AI代理协议的核心特性与应用场景。MCP擅长模型与外部工具集成,A2A侧重跨平台协作,ACP专为边缘设备优化,ANP采用去中心化设计。通过对比表格详细分析了各协议在核心能力、发现机制、适用场景和安全方案等方面的差异,并给出智能办公和工业生产两个典型场景的选型建议。文章还展望了AI代理协议未来在医疗、金融等领域的应用前景,为开发者选择合适协议提供了实用参考。原创 2025-09-01 14:31:22 · 1211 阅读 · 0 评论 -
秋招大模型求职秘籍:微调和RAG怎么选?
本文探讨了大模型技术中的微调和RAG技术及其在秋招中的应用。微调是在预训练模型基础上针对特定任务进行训练,适合专业性强但数据量大的场景;RAG则通过检索外部知识增强模型回答的实时性和准确性,适合知识更新频繁的领域。文章分析了不同岗位对这两项技术的要求差异,并提供了四项选择考量因素:应用场景、数据能力、技术能力和成本预算。最后给出了秋招中展示相关能力的建议,包括项目经验、技术博客和开源贡献等。原创 2025-08-31 21:46:48 · 735 阅读 · 0 评论 -
大模型参数到底是什么?
摘要:大模型的参数本质上是存储数值的矩阵,比如DeepSeek模型的6710亿个参数。这些参数类似于初中数学中的直线方程系数,但更复杂:它们通过训练过程学习捕捉文本、图像等数据的复杂规律。大模型需要海量参数是因为现实世界数据的非线性特征(如语言关联、图像细节)远超简单线性关系能描述的范畴。参数通过自注意力机制、反向传播等先进方法优化,最终形成对数据规律的压缩表达。理解大模型的核心就是认识这些参数如何存储规律,以及如何通过数学方法从数据中提取规律。原创 2025-08-31 21:18:48 · 953 阅读 · 0 评论 -
国产芯片一夜暴涨背后:UE8M0 FP8的神秘面纱
本文揭秘了国产芯片股价暴涨背后的关键技术——UE8M0 FP8。这种8位浮点格式通过"分块缩放"策略,显著提升计算效率,降低功耗和成本。文章解析了其技术原理:将张量分块,为每个块指定2的整数次幂作为缩放因子,将复杂乘法简化为指数加法。目前已有摩尔线程、芯原等国产芯片厂商开始适配该技术,实测显示效率提升300%以上。这一创新不仅构建了国产AI算力生态,还增强了技术自主性,引发资本市场强烈反响,寒武纪、海光等企业股价大涨,半导体ETF单日涨幅近6%,展现了国产芯片的技术突破和市场潜力。原创 2025-08-30 18:13:53 · 780 阅读 · 0 评论 -
全网最全的大模型分词器(Tokenizer)总结
摘要:大模型分词方式与算法解析 本文系统介绍了大模型中的三种分词方式:word level(按词分割)、character level(按字符分割)和subword level(子词分割)。重点分析了两种主流子词分词算法:BPE(字节对编码)和WordPiece。BPE通过合并高频相邻字符对逐步构建词表,而WordPiece则基于概率模型选择合并最大语言模型得分的字符对。文章通过具体示例演示了两种算法的分词过程,并指出它们在处理中英文时的差异。这些分词方法为后续理解WordPiece和SentencePie原创 2025-08-29 15:20:10 · 842 阅读 · 0 评论 -
构建生产级RAG系统:从数据处理到智能体的全流程实践
本文详细介绍了构建生产级RAG系统的全流程实践。从数据处理、多策略分块、清洗重构到向量化存储,建立高质量知识库;通过LangGraph构建智能体,实现规划-执行-反思的闭环工作流;采用匿名化、多检索源、RAGAS评估等技术提升系统可靠性。文章以工业设备维修手册为例,提供了可复用的技术方案和代码实现,帮助开发者将RAG技术从原型转化为稳定高效的生产级系统。 【关键词】RAG系统、智能体、知识库构建、LangGraph、生产级应用原创 2025-08-29 15:05:40 · 706 阅读 · 0 评论 -
10分钟理解大模型的量化
本文系统介绍了大模型量化技术,包括量化概念、精度类型(FP32/FP16/BF16/INT8)、量化方法(对称/非对称线性量化)、量化粒度(Per-tensor/channel/group)以及两种主要量化方式(PTQ和QAT)。量化通过降低参数精度来压缩模型、提高推理速度,使大模型能在资源受限设备上运行。文章还提及权重打包技术,并对比了不同行业中的量化概念,为理解大模型优化提供了全面视角。原创 2025-08-28 16:34:11 · 1011 阅读 · 0 评论 -
秋招大模型面试通关秘籍,纯干货不废话!
大模型面试通关指南 本文系统梳理了大模型领域秋招面试的完整攻略,涵盖三大关键环节: 一、面试趋势 大模型成为热门赛道,应用场景覆盖客服、创作、金融、医疗等领域 科技巨头和传统行业都在加速布局,人才需求激增 二、面试准备 知识储备:掌握Transformer架构、注意力机制及典型模型特点 项目经验:运用STAR法则展示成果,量化指标突出价值 公司研究:深入了解目标公司业务方向和技术应用场景 三、面试技巧 自我介绍:突出核心技能与项目成果 技术问答:从多维度展现问题解决能力 案例分析:全面分析潜在风险与对策 沟原创 2025-08-28 16:28:10 · 892 阅读 · 0 评论 -
MCP:基础概念、快速应用和背后原理
摘要: 模型上下文协议(MCP)是Anthropic推出的AI交互标准,通过统一接口连接大模型与外部资源(数据库、API等)。文章分为三部分:1)介绍MCP的基本架构(客户端-服务器模式);2)实操指南,涵盖现成服务使用与自建服务器;3)通过时序图解析协议运行机制,揭示Anthropic等实验室的设计理念。MCP支持三类功能(资源、工具、提示),开发者可通过社区平台获取或开发专属服务,并集成到Cherry Studio、LangGraph等平台,实现动态数据交互。协议采用初始化握手、功能协商等步骤,为下一代原创 2025-08-27 15:51:51 · 1414 阅读 · 0 评论 -
什么是大模型的位置编码Position-Encoding
本文介绍了位置编码技术及其在Transformer模型中的应用。位置编码分为绝对和相对位置编码两种类型,前者通过正弦余弦函数为序列元素添加位置向量,后者则关注元素间相对位置关系。文章详细讲解了绝对位置编码的实现步骤、设计原理和常见问题,并分析了相对位置编码的特点。特别介绍了旋转位置编码(RoPE)的数学推导过程,展示了如何将二维推广到多维场景。位置编码的外推性问题也被提及,强调了其在处理长序列时的重要性。最后,文章通过图示直观展示了RoPE的设计思路。原创 2025-08-26 15:21:49 · 739 阅读 · 0 评论 -
10分钟了解什么是多模态大模型
多模态大模型(MM-LLMs)是集成文本、图像、音频等多种数据类型的AI模型。其核心架构包括:模态编码器(将不同数据转换为特征表示)、输入投影器(映射到共享语义空间)、大型语言模型(核心处理单元)、输出投影器(转换输出格式)和模态生成器(生成多模态内容)。这类模型通过跨模态理解与生成能力,广泛应用于智能助理、内容推荐等领域,实现自然交互体验。关键组件如Stable Diffusion、CLIP等技术支持图像、音频的编码与生成。原创 2025-08-26 14:56:05 · 977 阅读 · 0 评论 -
落地企业级RAG的实践指南
本文介绍了企业级RAG(检索增强生成)系统的落地实践。重点分析了处理企业多样化文档(PDF/Word/邮件等)的难点,包括数据加载、标准化处理和分块策略。提出了将文档转换为统一JSON格式的方案,并详细探讨了语义搜索的局限性和混合搜索的优势。针对图片和表格数据,介绍了视觉检测、ViT转换和表格解析等专业技术方案。文章为企业实施RAG系统提供了从数据处理到检索优化的完整指导框架。原创 2025-08-25 14:21:27 · 644 阅读 · 0 评论 -
Agent设计范式与常见框架
本文介绍了Agent的设计范式与常见框架。Agent是指能感知环境并做出决策以实现目标的系统,其本质仍是prompt engineering。文章阐述了四种主要设计范式:Reflection(自我反思)、Tool use(工具使用)、Planning(规划)和Multi-agent collaboration(多智能体协作)。此外还讨论了高阶设计范式如ReAct和Planning & Execute的区别,以及多智能体协作框架如LangGraph和AutoGen的实现方式。AutoGen提供了四种协原创 2025-08-25 14:13:30 · 733 阅读 · 0 评论 -
大模型修炼手册:预训练与微调那些事儿
大模型训练与微调指南 本文系统介绍了大模型开发的两个关键阶段:预训练和微调。预训练阶段通过海量数据训练使模型具备通用语言能力,包括数据收集、清洗、分词处理等步骤,并重点讲解了Transformer架构与注意力机制的工作原理。微调阶段则针对特定任务优化预训练模型,分为全量微调和参数高效微调两种方式,详细说明了数据准备、参数设置和训练过程。文章还提供了丰富的学习资源链接,涵盖视频教程和开源资料,帮助开发者深入理解大模型开发全流程。原创 2025-08-24 19:49:10 · 1003 阅读 · 0 评论 -
大模型“炼金术”:强化学习RL
摘要: 强化学习(RL)作为大模型的“幕后军师”,通过试错与奖励机制显著提升模型能力。RL帮助大模型优化推理链(如数学解题)、对话策略(生成自然回复)及复杂决策(自动驾驶)。典型案例包括OpenAI的GPT-4o(多模态推理)、DeepSeek-R1(纯RL训练)等。然而,RL面临训练缓慢、奖励设计偏差及高算力需求等挑战,需通过算法优化(如PPO)和硬件升级(如分布式计算)突破瓶颈。未来,RL将继续推动大模型向更智能、高效的方向发展。原创 2025-08-24 19:44:37 · 263 阅读 · 0 评论 -
大模型微调面试题全解析:从概念到实战
大模型微调面试题解析摘要 本文系统阐述了大模型微调的核心概念与技术细节。微调是指在预训练大模型基础上,利用特定领域数据进一步训练以适应专业任务的过程,如医疗诊断或金融分析。数据质量直接影响微调效果,需注重任务对齐、多样性和低噪声。技术层面对比了全参数微调与高效微调(PEFT)的优缺点,详细解析了Lora和QLora等高效微调技术的原理,包括低秩矩阵和量化技术。文章还讨论了学习率选择策略,建议采用1e-5到1e-3范围并结合预热和衰减方法。这些内容全面覆盖了大模型微调的关键技术点,为相关面试提供了系统性的知识原创 2025-08-23 14:29:08 · 1027 阅读 · 0 评论 -
RAG系统开发中的12大痛点及应对策略
RAG系统开发的12大痛点及应对策略 本文总结了RAG系统开发中的12个关键难题及其解决方案: 缺失内容:通过多源数据补充和内容缺失检测机制解决 关键文档遗漏:采用混合检索模式与结果重排序优化 文档长度限制:实施分段摘要和动态上下文管理 信息提取困难:建立结构化提取规则和人工审核闭环 格式错误:规范文档录入标准并优化转换工具链 缺乏细节:优化prompt设计和构建细节标签库 回答不全面:引入问题拆解模块和完整性校验清单 数据扩展性问题:构建分布式架构和自动化接入工具 结构化数据问答:开发专用模块和语义映射库原创 2025-08-23 14:10:15 · 836 阅读 · 0 评论 -
模型压缩“炼金术”:剪枝、量化、知识蒸馏大揭秘
摘要 模型压缩技术通过剪枝、量化和知识蒸馏三大方法,有效解决了深度学习模型规模膨胀带来的计算资源与部署难题。剪枝技术通过去除冗余参数分为非结构化和结构化两种方式;量化技术将高精度浮点数转换为低精度整数以减少存储和计算需求;知识蒸馏则将大型教师模型的知识传递给小型学生模型。这些技术在图像识别、自然语言处理等领域已有成功应用案例,如LLaMA-2-7B模型经INT8量化后体积缩减75%,推理速度提升1.8倍。模型压缩使深度学习能更广泛地应用于资源受限场景,推动了AI技术的实际落地。原创 2025-08-22 14:07:55 · 735 阅读 · 0 评论 -
Masked Language Model 如何重塑大模型的预训练
本文探讨了Masked Language Model(MLM)在大模型预训练中的核心作用。MLM通过随机掩码部分词汇并让模型基于上下文预测,克服了传统N-gram模型在长距离依赖和数据稀疏方面的局限。文章详细解析了MLM的工作流程,包括数据处理时的多样化掩码策略、基于Transformer架构的上下文预测机制,以及交叉熵损失函数的优化原理。MLM的技术优势在于其双向上下文学习能力,能显著提升语义理解准确性,同时降低对标注数据的依赖。该技术已广泛应用于问答系统、机器翻译、文本摘要等NLP任务,推动了大模型在语原创 2025-08-22 13:59:22 · 919 阅读 · 0 评论 -
解锁大模型微调新姿势:从LoRA到QLoRA再到全量微调
在大模型微调的领域中,LoRA、QLoRA 和全量微调各自占据着独特的地位,它们为不同需求和资源条件的用户提供了多样化的选择。LoRA 以其低秩矩阵的创新设计,在减少参数量和内存占用的同时,保持了较高的训练效率,成为资源有限场景下的首选微调技术。QLoRA 则在 LoRA 的基础上更进一步,通过 4 位量化技术和分页优化器,实现了在极低内存消耗下对超大规模模型的高效微调,为大模型在资源受限环境中的应用开辟了新的道路。原创 2025-08-21 14:15:22 · 1237 阅读 · 0 评论 -
解锁工业级Prompt设计,打造高准确率AI应用
摘要 本文系统介绍了设计高效AI提示词(Prompt)的8大黄金法则,旨在帮助开发者提升AI应用的准确率和实用性。这些法则包括:明确任务目标、精准角色设定、丰富上下文信息、结构化输入、控制输出格式、示例引导、设置约束条件以及持续优化迭代。文章通过具体应用场景如文本分类、图像生成、法律咨询、数据分析等,详细阐述了如何运用这些法则优化AI交互效果。掌握这些Prompt设计技巧,能够显著提升AI系统生成结果的准确性和可用性,为各类AI应用的开发提供方法论指导。原创 2025-08-21 14:09:28 · 596 阅读 · 0 评论 -
从0到1学LangGraph之持久化管理
摘要: LangGraph持久化管理是LangChain生态中用于构建循环状态多行为体代理系统的关键功能,主要负责保存任务执行中的中间结果和状态信息,确保系统在意外中断后能恢复运行。其核心组件包括MemorySaver(内存存储)和检查点机制,支持将状态保存在内存或数据库中,适用于智能客服、投资顾问等需要长期记忆的场景。学习该技术能提升AI应用的稳定性和用户体验,避免数据丢失导致的服务中断。实现步骤包括安装LangGraph、导入必要模块(如Graph、MemorySaver)以及配置数据库连接。该技术为人原创 2025-08-20 14:47:43 · 761 阅读 · 0 评论 -
从0到1学LangGraph:解锁核心组件
文章摘要 LangGraph是由LangChain团队开发的开源框架,专为构建状态化、多代理系统设计。其核心组件包括Graph(图结构)、State(状态容器)、Nodes(功能节点)和Edges(节点连接)。Graph作为"协作网络"呈现工作流程;State记录运行时的关键数据;Nodes执行特定任务;Edges定义执行路径。这些组件共同支持循环、持久性和人工干预等特性,突破传统DAG限制,使大模型应用开发更加灵活高效。文章通过智能投资决策系统和图像识别应用等实例,展示了各组件在实际场原创 2025-08-20 14:27:48 · 985 阅读 · 0 评论 -
大模型落地选择困难症?RAG、Workflow、Agent全解析
摘要:大模型落地技术路径解析 本文系统分析了RAG、Workflow和Agent三种大模型落地技术路径的核心特点与适用场景。RAG通过检索增强生成机制,显著降低模型幻觉风险,适用于金融分析、医疗辅助等需要实时准确知识的领域;Workflow以流程化执行为特色,在文档审批、数据处理等标准化场景中展现稳定性优势;Agent则具备自主决策能力,适合处理复杂多变的任务。三种技术各具特点:RAG侧重知识补充、Workflow强调流程控制、Agent注重自主决策。企业应根据具体业务需求,权衡数据安全、实时性、灵活性等因原创 2025-08-19 14:07:23 · 1233 阅读 · 0 评论 -
RAG系统落地避坑指南:10条血与泪的教训
RAG系统落地避坑指南摘要 本文总结了生产级RAG系统落地的10条关键经验: 模型选择需权衡性能与成本,GPT-4通用性强但成本高,文心一言擅长中文处理,通义千问适合多模态场景。 向量数据库选型需匹配场景,Milvus适合大规模检索,Pinecone注重低延迟,Weaviate支持知识图谱,Pgvector便于PG生态集成。 数据清洗是基础,需处理缺失值(均值/中位数填充)、重复值(哈希去重)和错误值(正则校验),避免信息损失。 文本分段影响检索质量,过长会超出模型上下文限制,过短导致语义碎片化,需动态调整原创 2025-08-19 13:53:18 · 824 阅读 · 0 评论 -
LangGraph从0到1:开启大模型开发新征程
【摘要】LangGraph是LangChain团队开发的开源框架,专为构建有状态的AI应用而设计。它采用图结构定义工作流,节点代表任务单元,边控制流转逻辑,支持循环、分支和状态管理。核心特点包括:图结构工作流、全局状态管理、循环分支控制、人工干预机制和多智能体协作。典型应用场景涵盖智能客服、代码生成、金融风控、医疗辅助等领域。使用前需安装LangGraph及相关依赖,配置LangSmith账号获取API Key,并准备本地模型如llama3。LangGraph为开发者提供了构建复杂AI应用的强大工具集。原创 2025-08-18 14:18:42 · 1112 阅读 · 0 评论 -
Java开发者的大模型逆袭:LangChain4j实战指南
Java开发者如何用LangChain4j玩转大模型 摘要:本文介绍了Java开发者如何通过LangChain4j框架在大模型时代实现技术转型。LangChain4j作为Java版的LangChain实现,为开发者提供了便捷的大模型接入能力(支持15+主流模型)、丰富的功能模块(提示模板、记忆管理等)以及强大的链式调用机制。文章详细解析了其核心功能,包括统一API接入、任务工作流编排、工具集成等特性,并通过实战演示了如何搭建开发环境、添加依赖以及构建简单的AI助手。该框架让Java开发者能够快速将大模型能力原创 2025-08-18 14:08:51 · 1107 阅读 · 0 评论 -
揭秘vLLM:大模型推理的引擎
vLLM是伯克利团队开发的AI大语言模型高效推理引擎,其核心创新PagedAttention技术借鉴操作系统分页机制,显著提升内存利用率。相比传统框架,vLLM在吞吐量、推理速度和显存利用率上均有突破性提升,最高可达24倍吞吐量增长。该技术已应用于聊天机器人、智能客服等场景,并能通过简单pip安装快速部署。未来vLLM将持续优化模型支持与性能,拓展医疗、教育等领域的应用。原创 2025-08-17 16:12:18 · 1007 阅读 · 0 评论