scikit-learn中的岭回归实现解析

引言

在统计学和机器学习中,回归分析是一种预测连续响应变量与一个或多个解释变量之间关系的分析方法。岭回归(Ridge Regression),又称为L2正则化线性回归,是一种带有正则化项的特殊线性回归,主要用于处理共线性数据分析和提高模型的泛化能力。本文将详细探讨scikit-learn库中岭回归的实现原理和方法。

岭回归的数学原理

岭回归的目标函数是最小化一个带有正则化项的损失函数。对于线性回归问题,其目标函数可以表示为:

[ \text{minimize} \sum_{i=1}^{n}(y_i - X_i \beta)^2 + \lambda |\beta|^2 ]

其中:

  • ( y_i ) 是第 ( i ) 个观测值的目标变量。
  • ( X_i ) 是第 ( i ) 个观测值的特征向量。
  • ( \beta ) 是回归系数向量。
  • ( \lambda ) 是正则化参数,控制正则化项的权重。
  • ( |\beta|^2 ) 是( \beta )的L2范数,即所有回归系数平方和。

岭回归通过添加一个正则化项来惩罚过大的回归系数,从而避免过拟合,并在一定程度上解决共线性问题。

岭回归的求解

岭回归问题可以通过解析方法求解。将目标函数对 ( \beta ) 求导,并令导数为0,可以得到正规方程的解:

[ (X^TX + \lambda I)\beta = X^Ty ]

这里:

  • ( X ) 是设计矩阵,每一行对应一个样本,每一列对应一个特征。
  • ( y ) 是目标变量的向量。
  • ( I ) 是单位矩阵。
  • ( \lambda ) 是正则化参数。

解这个方程可以得到岭回归的系数 ( \beta )。

scikit-le

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值