今天给大家介绍一个超强大的深度学习模型:CNN-LSTM-Attention!
这个模型结合了三种不同类型的神经网络架构,充分挖掘了数据中的空间和时间信息,不仅能捕捉数据的局部特征和长期依赖关系,还可以自动关注输入数据中最重要的部分,在提高预测准确性和鲁棒性方面起到了非常重要的作用。
因此它也是解决时间序列预测和其他序列数据处理任务的首选,关于它的研究在各大顶会上热度飞升,比如分类准确率近100%的CBLA模型等。
AdeepLSTM-CNNbasedonself-attention mechanism with input data reduction for short-term load forecasting
方法:论文介绍了一个深度学习模型,该模型基于长短期记忆网络、卷积神经网络以及自注意力机制(self-attention mechanism,简称SAM)来进行短期负荷预测(STLF)。实验证明该模型在减少输入数据的同时提升了预测精度,且优于传统基准模型超过10%。
创新点:
- 首次在短期负荷预测(STLF)中采用LSTM-CNN结合的SAM模型。
- 通过仅使用负荷数据,实现一种基于输出维度的混合预测框架。
- 创新性地使用卷积核来提取用户的随机性,解决非平稳特性问题。
Prediction of Remaining Useful Life of Aero‑engines Based on CNN‑LSTM‑Attention
方法:论文介绍了一个结合了卷积神经网络、长短期记忆网络和注意力机制的预测方法,用于预测航空发动机的剩余使用寿命(RUL)。模型首先使用CNN提取输入数据的特征,然后将提取的数据输入到LSTM网络模型中,最后通过加入注意力机制来预测航空发动机的RUL。
创新点:
- 提出了一种创新的组合预测方法,整合了卷积神经网络、长短期记忆网络和自注意力机制,用于更准确地预测航空发动机的剩余使用寿命(RUL)。
- 在CNN-LSTM模型中引入了自注意力机制,使得LSTM组件在最终预测中更关注由CNN重构的特征中的重要部分。
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction
方法:本文提出了一种基于注意力机制的CNN-LSTM和XGBoost混合模型,用于预测中国股市股票价格,通过整合ARIMA模型和神经网络的非线性关系,解决传统时序模型难以捕捉非线性的问题,提高预测准确性,帮助投资者实现收益增长和风险规避。
创新点:
- 提出了一种结合注意力机制的CNN-LSTM和XGBoost的混合模型,显著提高了股票价格预测的准确性。
- 采用预训练-微调框架,先通过Attention-based CNN-LSTM模型提取原始股票数据的深层特征,再利用XGBoost模型进行微调。
- 使用ARIMA模型对股票数据进行预处理,然后将经过预处理的数据输入神经网络或XGBoost进行分析。
Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model
方法:论文提出了一个混合卷积神经网络(CNN)和长短期记忆网络(LSTM)加上注意力机制(Attention)的模型来检测电机故障。这个混合模型通过时间序列分析来预测电机可能出现的异常,从而实现对电机故障的预测性维护。
创新点:
- 提出了结合LSTM和CNN的混合架构,并引入注意力机制和门控残差网络(GRN),显著提高了时间序列预测的准确性,特别是在预测极端事件时表现优异。
- 在网络输出端应用分位数回归,以处理数据中存在的不确定性。
- 采用经验小波变换(EWT)和Savitzky-Golay滤波器,以减少信号中的噪声并提取相关特征。
最后
选择AI大模型就是选择未来!最近两年,大家都可以看到AI的发展有多快,我国超10亿参数的大模型,在短短一年之内,已经超过了100个,现在还在不断的发掘中,时代在瞬息万变,我们又为何不给自己多一个选择,多一个出路,多一个可能呢?
与其在传统行业里停滞不前,不如尝试一下新兴行业,而AI大模型恰恰是这两年的大风口,整体AI领域2025年预计缺口1000万人,人才需求急为紧迫!
由于文章篇幅有限,在这里我就不一一向大家展示了,学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。
【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!
获取方式:有需要的小伙伴,可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
包括:AI大模型学习路线、LLM面试宝典、0基础教学视频、大模型PDF书籍/笔记、大模型实战案例合集、AI产品经理合集等等
大模型学习之路,道阻且长,但只要你坚持下去,一定会有收获。本学习路线图为你提供了学习大模型的全面指南,从入门到进阶,涵盖理论到应用。
L1阶段:启航篇|大语言模型的基础认知与核心原理
L2阶段:攻坚篇|高频场景:RAG认知与项目实践
L3阶段:跃迀篇|Agent智能体架构设计
L4阶段:精进篇|模型微调与私有化部署
L5阶段:专题篇|特训集:A2A与MCP综合应用 追踪行业热点(全新升级板块)
AI大模型全套学习资料【获取方式】