风险反欺诈预警
如下所示,查询得到用户各维度的风控信息
AB人群效果测试
示例:测试精准推送相比普通推送带来的流量提升
用户生命周期划分与营销
简介
生命周期:用户从接触产品(网站)到离开产品(网站)的发展过程
生命周期价值LTV(Life Time Value)/CLV(Customer Life Value):在发展过程中用户为产品(网站)所带来的价值总和
生命周期划分
生命周期 | 用户价值 |
引入期 | 用户刚来,试探性地试用产品,用户价值较低 |
成长期 | 用户不定期使用产品,用户价值提升 |
成熟期 | 用户经常使用产品,并可能以分享形式宣传产品,用户价值较高 |
衰退期 | 用户因某些原因(如产品升级等)不再使用该产品,用户价值衰减 |
流失期 | 用户非常不满意产品/找到了替代的同类型产品,不再使用该产品 |
如何进行用户运营
制定目标
-
首先,不能唯周期论,需要制定特定的目标。比如,用户生命周期分析的核心目标是:提升用户生命周期每个节点的转化率,提升用户的留存(用户的参与度)
-
其次,围绕目标,我们需要拆解出关键指标,针对这些指标如何满足用户的核心需求。如下所示
LTV
结合Melnick的理论与互联网产品的实际情况,将用户的生命周期价值拆解为:
LTV = (某个客户每个月的下单频次*客单价*毛利率)*(1/月流失率)
=(某个客户每个月的下单频次*ARPU*毛利率)*[1/(1-月留存率)]
=用户生命周期内下单次数*客单价*毛利率
其中,ARPU(每个用户的平均收入)=某段时间内的总收入/同时期内活跃的用户总数;月流失率=1-月留存率。用1/月流失率预测用户的生命周期,如一个产品的流失率是10%,则产品对应的生命周期为10个月
用户生命周期的业务应用场景
-
根据拆解目标为提升LTV制定不同的运营策略
根据拆解公式克制,需要提升用户质量(对应客单价)、提升用户转化(对应下单次数)、提升用户活跃度(进行流失原因分析) -
评估用户运营活动是否盈利:单个用户毛利=LTV/CLV-获客成本-运营成本=CLV-CAC-COC
追踪投资回报率
-
计算:ROI=转化率*ARPU/(CAC+COC)
-
提高ROI的方式
用户生命周期划分方式
结合App使用阶段、RFM、最近一次访问距今天数(判断用户是否已经流失)进行划分如下:
用户生命周期延长策略
不同用户生命周期用户的运营策略
生命周期 | 运营策略 |
引入期 | 通过消息推送、站内广告推送等方式触达用户;通过红包、优惠券等方式缩短用户进行安装-注册-首次下单的时间间隔 |
成长期 | 通过消息推送、站内广告推送等方式缩短用户购买时间间隔,刺激复购 |
成熟期 | 通过消息推送、站内广告推送等方式触达用户;通过满减、满送等活动提高用户客单价,培养用户使用习惯,刺激复购 |
衰退期 | 通过短信、邮件、主动外呼等方式触达用户;通过用户流失预警机制,提升用户活跃度 |
流失期 | 经验:获取新用户的成本比挽留老用户的成本普遍高5倍以上通过短信、邮件、主动外呼等方式触达用户;通过对已流失用户进行召回 |
画像在生命周期中的应用
主要应用
-
分析不同生命周期阶段的用户特征;
-
选择触达用户渠道
-
分析营销效果
应用实例
-
消息推送新用户-提升用户注册率
-
思路:80%左右的用户在安装3日内完成注册行为,新安装3日是一个重要的时间点
-
手段:圈定安装3日内的用户,将新人红包、优惠券等活动,通过消息推送等渠道推送给该批用户
-
-
短信营销新注册用户-提升下单率
-
思路:76%的用户在注册后前9日内完成首次交易,新注册9日是一个重要的时间点
-
手段:圈定新注册9日内,且浏览/收藏/加购的用户,将新人红包到期提醒及母婴类大促商品编辑成文案,通过短信渠道推送给该批用户
-
-
用户全生命周期营销
-
思路:对不用阶段用户做站内广告弹窗和落地页的分组展示,评估用户从浏览、活跃到最终转化的差异
-
高价值用户实时营销
实时标签调用方案:
短信营销用户
画像切入点:
-
短信敏感度
-
无效手机号
-
对营销商品感兴趣的用户
Session行为分析应用
用户的行为指标:黏性指标、参与度指标、转化类指标
黏性指标
如:访问频率、留存
参与度指标
-
活跃度:活跃度没有标准的定义
-
打开率(DAU/MAU,指标越大说明产品的参与度越高)
-
访问时长
-
访问页面数
转化类指标
分析用户转化的角度:
-
产品的整体运营情况:用户从激活到下单的整个流程;
-
产品的关键路径:用户接触产品到完成转化的步骤
实例详解
详见:P221~P228
借助手段:用户的Session流量桑基图
人群效果监测报表搭建
Excel报表自动化流程:
自动报表邮件:
Python处理Excel的代码实现:P237~P239
基于用户特征库筛选目标人群
基于特征库筛选特定目标的用户
结尾
亲爱的读者朋友:感谢您在繁忙中驻足阅读本期内容!您的到来是对我们最大的支持❤️
正如古语所言:"当局者迷,旁观者清"。您独到的见解与客观评价,恰似一盏明灯💡,能帮助我们照亮内容盲区,让未来的创作更加贴近您的需求。
若此文给您带来启发或收获,不妨通过以下方式为彼此搭建一座桥梁: ✨ 点击右上角【点赞】图标,让好内容被更多人看见 ✨ 滑动屏幕【收藏】本篇,便于随时查阅回味 ✨ 在评论区留下您的真知灼见,让我们共同碰撞思维的火花
我始终秉持匠心精神,以键盘为犁铧深耕知识沃土💻,用每一次敲击传递专业价值,不断优化内容呈现形式,力求为您打造沉浸式的阅读盛宴📚。
有任何疑问或建议?评论区就是我们的连心桥!您的每一条留言我都将认真研读,并在24小时内回复解答📝。
愿我们携手同行,在知识的雨林中茁壮成长🌳,共享思想绽放的甘甜果实。下期相遇时,期待看到您智慧的评论与闪亮的点赞身影✨!
万分感谢🙏🙏您的点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~
自我介绍:一线互联网大厂资深算法研发(工作6年+),4年以上招聘面试官经验(一二面面试官,面试候选人400+),深谙岗位专业知识、技能雷达图,已累计辅导15+求职者顺利入职大中型互联网公司。熟练掌握大模型、NLP、搜索、推荐、数据挖掘算法和优化,提供面试辅导、专业知识入门到进阶辅导等定制化需求等服务,助力您顺利完成学习和求职之旅(有需要者可私信联系)
友友们,自己的知乎账号为“快乐星球”,定期更新技术文章,敬请关注!