患者眼睛图像数据集的应用 左眼右眼彩色眼底数据集的诊断及应用 利用患者眼睛图像数据集进行眼科疾病的自动诊断

患者眼睛图像数据集
3500名患者信息,包括年龄、左眼右眼彩色眼底照片及医生诊断关键词。
八种标签:正常(N)、糖尿病(D)、青光眼(G)、白内障(C)、AMD(A)、高血压(H)、近视(M)、其他疾病/异常(O)。
利用患者眼睛图像数据集进行眼科疾病的自动诊断。这个数据集包含了3500名患者的详细信息,包括年龄、左眼右眼的彩色眼底照片以及医生的诊断关键词。我们的目标是通过深度学习模型来识别八种不同的标签:正常(N)、糖尿病(D)、青光眼(G)、白内障(C)、AMD(A)、高血压(H)、近视(M)和其他疾病/异常(O)。听起来是不是很酷?让我们一步步来实现它吧!
第一步:导入必要的库
首先,我们需要导入一些常用的Python库来帮助我们进行数据分析和建模。
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam
第二步:加载数据并初步探索
假设你的数据文件名为patient_data.csv
,我们可以使用Pandas来加载数据,并查看前几行以了解数据的基本情况。
# 加载数据
data = pd.read_csv('patient_data.csv')
# 查看前几行数据
print(data.head())
# 检查数据基本信息
print(data.info())
第三步:数据预处理
我们需要对图像数据进行预处理,以便输入到深度学习模型中。
# 设置图像尺寸
img_width, img_height = 224, 224
# 创建图像生成器
datagen = ImageDataGenerator(rescale=1./255)
# 加载训练数据
train_generator = datagen.flow_from_dataframe(
dataframe=data,
directory='path_to_images',
x_col="image_path",
y_col="diagnosis",
target_size=(img_width, img_height),
batch_size=32,
class_mode='categorical'
)
第四步:构建卷积神经网络模型
接下来,我们要构建一个简单的卷积神经网络(CNN)模型来进行分类。
# 初始化模型
model = Sequential()
# 添加卷积层和池化层
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(img_width, img_height, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 展平层
model.add(Flatten())
# 全连接层
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(8, activation='softmax'))
# 编译模型
model.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
第五步:训练模型
现在我们可以开始训练模型了。
# 训练模型
history = model.fit(
train_generator,
steps_per_epoch=len(train_generator),
epochs=20
)
第六步:评估模型
训练完成后,我们需要评估模型的性能。
# 绘制训练过程中的损失和准确率曲线
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['loss'], label='Training Loss')
plt.title('Training Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.title('Training Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
第七步:保存模型
最后,我们可以将训练好的模型保存下来,以便以后使用。
# 保存模型
model.save('eye_disease_classifier.h5')
!