yolov5中的Focus模块的理解_focus结构

参数数量(params):关系到模型大小,单位通常是M,通常参数用float32表示,所以模型大小是参数数量的4倍。

计算量(FLOPs):即浮点运算数,可以用来衡量算法/模型的复杂度,这关系到算法速度,大模型的单位通常为G,小模型单位通常为M;通常只考虑乘加操作的数量,而且只考虑Conv和FC等参数层的计算量,忽略BN和PReLU等,一般情况下,Conv和FC层也会忽略仅纯加操作的计算量,如bias偏置加和shoutcut残差加等,目前技术有BN和CNN可以不加bias。

params计算公式

Kh × Kw × Cin × Cout

FLOPs计算公式

Kh × Kw × Cin × Cout × H × W = 即(当前层filter × 输出的feature map)= params × H × W

总所周知,图片在经过Focus模块后,最直观的是起到了下采样的作用,但是和常用的卷积下采样有些不一样,可以对Focus的计算量和普通卷积的下采样计算量进行做个对比:

在yolov5s的网络结构中,可以看到,Focus模块的卷积核是3 × 3,输出通道是32:
在这里插入图片描述

那么做个对比:

普通下采样:即将一张640 × 640 × 3的图片输入3 × 3的卷积中,步长为2,输出通道32,下采样后得到320 × 320 × 32的特征图,那么普通卷积下采样理论的计算量为:

FLOPs(conv) = 3 × 3 × 3 × 32 × 320 × 320 = 88473600(不考虑bias情况下)
params参数量(conv) = 3 × 3 × 3 × 32 +32 +32 = 928 (后面两个32分别为bias和BN层参数)

Focus:将640 × 640 × 3的图像输入Focus结构,采用切片操作,先变成320 × 320 × 12的特征图,再经过3 × 3的卷积操作,输出通道32,最终变成320 × 320 × 32的特征图,那么Focus理论的计算量为:

FLOPs(Focus) = 3 × 3 × 12 × 32 × 320 × 320 = 353894400(不考虑bias情况下)
params参数量(Focus)= 3 × 3 × 12 × 32 +32 +32 =3520 (为了呼应上图输出的参数量,将后面两个32分别为bias和BN层的参数考虑进去,通常这两个占比比较小可以忽略)

可以明显的看到,Focus的计算量和参数量要比普通卷积要多一些,是普通卷积的4倍,但是下采样时没有信息的丢失。(结论已修改,请看后续更新)

综上所述,其实就可以得出结论,Focus的作用无非是使图片在下采样的过程中,不带来信息丢失的情况下,将W、H的信息集中到通道上,再使用3 × 3的卷积对其进行特征提取,使得特征提取得更加的充分。虽然增加了一点点的计算量,但是为后续的特征提取保留了更完整的图片下采样信息。


2021-07-01更新:作者有在issues中提到Focus是为了提速,和mAP无关,但是也没有说是什么原理,我也是一知半解,本文也仅从计算量和参数量去分析该模块,如果有看懂作者这样作法的同学望评论区告知。

2021-08-16更新:作者终于在issues上做了具体的解答,和之前分析的思路一样,都是从计算量参数量出发,不同的是,在作者解答之前我们并不知道作者改进的出发点是什么,也就是不清楚他在何结构上进行的改进,文中我理解为只是对一层普通下采样卷积做的改进,实际上有三层,所以经过改进后参数量其实还是变少了的,也确实达到了提速的效果,具体内容可以结合本文分析过程和作者给的issues结合起来看。
在这里插入图片描述

最后

千呼万唤始出来的结论,终于解开了我这么长时间的疑惑,虽然之前文中的结论和作者实际的结论是相反的;主要原因还是因为不知道作者改进的出发点在哪里,所以分析过程虽然是对的,但是结论却是反着了;知道了改进的出发点后,再把过程重新梳理一下,就很好理解了。最后也感谢大家的讨论

本人从事网路安全工作12年,曾在2个大厂工作过,安全服务、售后服务、售前、攻防比赛、安全讲师、销售经理等职位都做过,对这个行业了解比较全面。

最近遍览了各种网络安全类的文章,内容参差不齐,其中不伐有大佬倾力教学,也有各种不良机构浑水摸鱼,在收到几条私信,发现大家对一套完整的系统的网络安全从学习路线到学习资料,甚至是工具有着不小的需求。

最后,我将这部分内容融会贯通成了一套282G的网络安全资料包,所有类目条理清晰,知识点层层递进,需要的小伙伴可以点击下方小卡片领取哦!下面就开始进入正题,如何从一个萌新一步一步进入网络安全行业。

学习路线图

其中最为瞩目也是最为基础的就是网络安全学习路线图,这里我给大家分享一份打磨了3个月,已经更新到4.0版本的网络安全学习路线图。

相比起繁琐的文字,还是生动的视频教程更加适合零基础的同学们学习,这里也是整理了一份与上述学习路线一一对应的网络安全视频教程。

网络安全工具箱

当然,当你入门之后,仅仅是视频教程已经不能满足你的需求了,你肯定需要学习各种工具的使用以及大量的实战项目,这里也分享一份我自己整理的网络安全入门工具以及使用教程和实战。

项目实战

最后就是项目实战,这里带来的是SRC资料&HW资料,毕竟实战是检验真理的唯一标准嘛~

面试题

归根结底,我们的最终目的都是为了就业,所以这份结合了多位朋友的亲身经验打磨的面试题合集你绝对不能错过!

<think>好的,我现在需要帮用户找到YOLOv5Focus模块在哪个文件夹里。首先,用户之前的问题是关于CSP2_x的感受野,现在转向了YOLOv5Focus模块位置。这说明用户可能在研究YOLOv5的模型结构,或者在进行代码层面的修改。 首先,我应该回忆一下YOLOv5的代码结构YOLOv5的代码通常包含models文件夹,里面存放各种模型定义的文件,比如yolo.py、common.py等。Focus模块属于模型的一部分,所以可能在common.py里,因为那里定义了常见的模块,比如Conv、Bottleneck等。 接下来,我需要确认自己的记忆是否正确。比如,是否在YOLOv5的官方代码库中,Focus模块确实定义在common.py中。可能需要快速检查一下代码结构,或者根据以往经验判断。记得YOLOv5Focus模块在早期的版本中使用,用于下采样,替代了之前的步幅2的卷积。后来在v6.0之后被替换成Conv模块的stride=2,所以用户可能使用的是较旧版本的YOLOv5。 用户可能的情况是:他们在查看YOLOv5的代码,想要找到Focus模块的具体实现位置,以便进行修改或者理解结构。可能的背景是他们在复现模型,或者调整某个部分的结构,比如修改Focus的参数,或者替换成其他模块。 另外,用户可能对YOLOv5的代码结构不熟悉,所以需要给出明确的路径,比如models/common.py。同时,需要注意不同版本之间的差异,比如在v6.0之后Focus被移除,所以需要提醒用户检查版本。如果他们使用的是新版本,可能找不到Focus模块,这时候需要解释替代方案,比如Conv模块的使用。 可能的深层需求是用户想了解如何修改Focus模块,或者为什么他们的代码中没有这个模块。因此,回答中需要包含版本变化的信息,帮助用户定位问题。同时,提供代码示例和路径,让用户能快速找到相关代码的位置。 总结回答的结构应该是:首先指出Focus模块的位置,然后解释其作用,接着说明版本变化,最后提供示例代码和检查版本的建议。这样用户不仅能找到文件位置,还能理解可能的版本差异,解决潜在的问题。</think>在YOLOv5的官方代码仓库中,**Focus模块**的实现位于以下路径: --- ### **1. 文件位置** ``` models/common.py ``` - **Focus类**在该文件中定义,属于模型的基础组件。 - **调用入口**在模型配置文件(如`yolov5s.yaml`)中通过`Focus`关键词触发。 --- ### **2. 模块作用** Focus模块的核心功能是**通过切片操作实现空间信息压缩(类似下采样)**,具体流程: 1. **切片操作**:将输入特征图按通道维度拆分为4份(例如640×640×3 → 4份320×320×3)。 2. **拼接与卷积**:将切片后的特征拼接为320×320×12,再通过1×1卷积压缩通道(例如输出320×320×64)。 --- ### **3. 代码示例(简化版)** ```python class Focus(nn.Module): def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): super().__init__() self.conv = Conv(c1*4, c2, k, s, p, g, act) # 最终通过Conv处理拼接后的特征 def forward(self, x): # 切片操作:将特征图拆分为4部分并拼接 return self.conv( torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1) ) ``` --- ### **4. 版本兼容性说明** | **YOLOv5版本** | **Focus模块状态** | **替代方案** | |----------------|--------------------------------|-------------------------------| | **v6.0之前** | 默认使用Focus模块 | 无 | | **v6.0及之后** | 被移除,改用`Conv(k=6, s=2, p=2)` | 通过`Conv`层实现等效下采样 | --- ### **5. 如何验证?** 1. 检查代码仓库: - 在`models/common.py`中搜索`class Focus`。 2. 查看模型配置文件(如`yolov5s.yaml`): - 若配置中出现`[-1, 1, Focus, [64, 3]]`,则说明使用了Focus模块。 --- ### **6. 设计意义** - **减少计算量**:相比直接使用3×3卷积下采样,Focus模块通过切片操作降低FLOPs。 - **保留细粒度特征**:避免因卷积步长过大导致的信息丢失。 --- **注**:若你使用的是YOLOv5 v6.0+版本,建议改用`Conv(k=6, s=2, p=2)`实现等效效果(官方已弃用Focus模块)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值