数据结构笔记

概念

数据结构是计算机科学中的一个核心概念,它是指数据的组织、管理和存储方式,以及数据元素之间的关系。数据结构通常用于允许高效的数据插入、删除和搜索操作。

数据结构大致分为几大类:

线性结构:数组、链表、栈、队列等。

非线性结构:树、二叉树、堆、图等。

散列:哈希表。

索引:B树、B+树等。

常见数据结构:

栈:

栈(stack),它是一种运算受限的线性表,遵循后进先出(Last In First Out,LIFO)原则的数据结构。

LIFO(last in first out)表示就是后进入的元素, 第一个弹出栈空间. 类似于自动餐托盘, 最后放上的托盘, 往往先把拿出去使用.

其限制是仅允许在表的一端进行插入和删除运算。这一端被称为栈顶,相对地,把另一端称为栈底。

向一个栈插入新元素又称作进栈、入栈或压栈,它是把新元素放到栈顶元素的上面,使之成为新的栈顶元素;

从一个栈删除元素又称作出栈或退栈,它是把栈顶元素删除掉,使其相邻的元素成为新的栈顶元素。

示例:

class Stack:
    def __init__(self, size):
        #通过数组实现栈的操作
        self.items = []
        self.size = size
    #判断栈是否为满
    def is_full(self):
        return len(self.items) == self.size
    #判断栈是否为空
    def is_empty(self):
        return len(self.items) == 0
    #入栈,先判断栈是否已满,是则抛异常,否则在尾部添加元素
    def push(self, item):
        if self.is_full():
            raise Exception('Stack is full!')
        self.items.append(item)
    #出栈,先判断是否为空,是则抛异常,否则删除尾部元素    
    def pop(self):
        if self.is_empty():
            raise Exception('Stack is empty!')
        return self.items.pop()
    #清除栈内所有元素
    def clear(self):
        self.items.clear()
    #查询,返回最后一个元素
    def peek(self):
        if self.is_empty():
            raise Exception('Stack is empty!')
        return self.items[-1]
if __name__ == '__main__':
    s = Stack(10)
    s.push(1)
    s.push(3)
    s.push(2)
    s.pop()
    print(s.peek())

#3

链表:

链表是一条相互链接的数据节点表。每个节点由两部分组成:数据和指向下一个节点的指针。

优点:

  1. 物理存储单元上非连续,而且采用动态内存分配,能够有效的分配和利用内存资源;

  2. 节点删除和插入简单,不需要内存空间的重组。

缺点:

  1. 不能进行索引访问,只能从头结点开始顺序查找;

  2. 数据结构较为复杂,需要大量的指针操作,容易出错。

示例:

class Node:
    def __init__(self, data = None):
        if data is not None:
            self.data = data
        self.next = None
class LinkedList:
    def __init__(self):
        head = Node()
        self.head = head
    #头部插入
    def head_insert(self,data):
        new_node = Node(data)
        #如果链表为空
        if self.head.next is None:
            self.head.next = new_node
        #如果链表不为空
        else:
            new_node.next = self.head.next
            self.head.next = new_node
    #尾部插入
    def tail_insert(self,data):
        new_node = Node(data)
        #如果链表为空
        if self.head.next is None:
            self.head.next = new_node
        #如果链表不为空
        else:
            node = self.head.next
            #判断数据节点后边是否还存在节点,如果存在节点则指针向后移动,否则认为是最后一个节点,将新节点连接到最后一个节点后边
            while node.next is not None:
                node = node.next
            node.next = new_node
    #删除链表节点
    def node_delete(self,data):
        if self.head.next is None:
            raise Exception('LinkedList is empty!')
        node = self.head
        #判断数据节点是否为空,不为空则判断数据节点的data是否与要删除的data相等,是则删除,否则节点向后移动到下一个节点
        while node.next is not None:
            if node.next.data == data:
                node.next = node.next.next
                break
            node = node.next
    def show_LinkedList(self): 
        if self.head.next is None:
            return None
        node = self.head.next
        while True:
            print(node.data)
            if node.next is None:
                break
            node = node.next
        
if __name__ == '__main__':
    l = LinkedList()
    l.head_insert(2)
    l.head_insert(1)
    l.tail_insert(3)
    l.tail_insert(4)
    l.node_delete(4)
    l.show_LinkedList()

#1
#2
#3

队列:

队列(Queue),它是一种运算受限的线性表,先进先出(FIFO First In First Out)

  • 队列是一种受限的线性结构

  • 受限之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作

queue.Queue 是 Python 标准库 queue 模块中的一个类,适用于多线程环境。它实现了线程安全的 FIFO(先进先出)队列。

双端队列(Deque,Double-Ended Queue)是一种具有队列和栈性质的数据结构,它允许我们在两端进行元素的添加(push)和移除(pop)操作。在Python中,双端队列可以通过collections模块中的deque类来实现。

deque是一个双端队列的实现,它提供了在两端快速添加和移除元素的能力。

优先队列(Priority Queue)是一种特殊的队列,其中的元素按照优先级进行排序。优先级最高的元素总是最先出队。Python 标准库中提供了 queue.PriorityQueue 和 heapq 模块来实现优先队列。

queue.PriorityQueue

queue.PriorityQueue 是 Python 标准库 queue 模块中的一个类,适用于多线程环境。它实现了线程安全的优先队列。

示例:

import queue
import heapq
from collections import deque
#python提供的普通队列
def func01():
    q = queue.Queue()
    q.put(1)
    q.put(2)
    q.put(3)
    q.put(4)
    q.get()
def func02():
    q = deque()
    q.append(1)
    q.append(2)
    q.append(3)
    #append pop结合使用可以实现栈的操作
    print(q.pop())
    print(q.pop())
    print(q.pop())
def func03():
    #双端队列
    q = deque()
    #队列左端入队
    q.appendleft(1)
    print(q.popleft())
def func04():
    #优先队列 按入队时的优先级进行排序,出队时按照优先级出队,优先级高的先出
    q = queue.PriorityQueue()
    #元组(priority,item)
    q.put(2,'item2')
    q.put(1,'item1')
    q.put(3,'item3')
    print(q.get())
    print(q.get())
    print(q.get())
'''
Queue、deque、priorityQueue都是线程安全的
heapq线程不安全,基于堆实现队列,堆时是共享资源,如果多线程同时访问共享资源,则会产生资源竞争,并没有采取措施解决资源竞争问题
'''
def func05():
    #heapq:基于堆的优先队列
    #使用数组实现
    heap = []
    #heappush将一个元组存入heap,元素格式为(priority,item)
    heapq.heappush(heap,(1,'item1'))
    heapq.heappush(heap,(3,'item3'))
    heapq.heappush(heap,(2,'item2'))
    #heappop从heap中出队
    print(heapq.heappop(heap))
    print(heapq.heappop(heap))
    print(heapq.heappop(heap))
if __name__ == '__main__':
    func05()

树:

树的定义:

  • 树(Tree): n(n≥0)个结点构成的有限集合。

    • 当n=0时,称为空树;

    • 对于任一棵非空树(n> 0),它具备以下性质:

    • 树中有一个称为“根(Root)”的特殊结点,用 root 表示;

    • 其余结点可分为m(m>0)个互不相交的有限集T1,T2,... ,Tm,其中每个集合本身又是一棵树,称为原来树的“子树(SubTree)”

    注意:

    • 子树之间不可以相交

    • 除了根结点外,每个结点有且仅有一个父结点;

    • 一棵N个结点的树有N-1条边。

树的术语:

  • 1.结点的度(Degree):结点的子树个数.

  • 2.树的度:树的所有结点中最大的度数. (树的度通常为结点的个数N-1)

  • 3.叶子结点(Leaf):度为0的结点. (也称为叶子结点)

  • 4.父结点(Parent):有子树的结点是其子树的根结点的父结点

  • 5.子结点(Child):若A结点是B结点的父结点,则称B结点是A结点的子结点;子结点也称孩子结点。

  • 6.兄弟结点(Sibling):具有同一父结点的各结点彼此是兄弟结点。

  • 7.路径和路径长度:从结点n1到nk的路径为一个结点序列n1 , n2,… , nk, ni是 ni+1的父结点。路径所包含边的个数为路径的长度。

  • 8.结点的层次(Level):规定根结点在1层,其它任一结点的层数是其父结点的层数加1。

  • 9.树的深度(Depth):树中所有结点中的最大层次是这棵树的深度。

二叉树:

二叉树的定义

  • 二叉树可以为空, 也就是没有结点.

  • 若不为空,则它是由根结点和称为其左子树TL和右子树TR的两个不相交的二叉树组成。

二叉树有五种形态:

  • 注意c和d是不同的二叉树, 因为二叉树是有左右之分的.

二叉树有几个比较重要的特性, 在笔试题中比较常见:

  • 一个二叉树第 i 层的最大结点数为:2^(i-1), i >= 1;

  • 深度为k的二叉树有最大结点总数为: 2^k - 1, k >= 1;

  • 对任何非空二叉树 T,若n0表示叶结点的个数、n2是度为2的非叶结点个数,那么两者满足关系n0 = n2 + 1。

  • 满二叉树(Full Binary Tree)

  • 在二叉树中, 除了最下一层的叶结点外, 每层节点都有2个子结点, 就构成了满二叉树.

完全二叉树(Complete Binary Tree)

  • 除二叉树最后一层外, 其他各层的节点数都达到最大个数.

  • 且最后一层从左向右的叶结点连续存在, 只缺右侧若干节点.

  • 满二叉树是特殊的完全二叉树.

  • 下面不是完全二叉树, 因为D节点还没有右结点, 但是E节点就有了左右节点.

遍历规则:

前序遍历,按照以下顺序访问节点:根节点、左子树、右子树。

中序遍历,按照以下顺序访问节点:左子树、根节点、右子树。

后序遍历,按照以下顺序访问节点:左子树、右子树、根节点。

二叉查找树:

二叉查找树(Binary Search Tree, BST)是一种特殊的二叉树,它具有以下性质:

  1. 每个节点都有一个键值(key)。

  2. 对于每个节点,其左子树中的所有节点的键值都小于该节点的键值。

  3. 对于每个节点,其右子树中的所有节点的键值都大于该节点的键值。

  4. 左子树和右子树也分别是二叉查找树。

  5. 二叉查找树不允许出现键值相等的结点。

插入操作的步骤:

  1. 如果树为空:直接将新节点作为根节点。

  2. 如果树不为空

    • 从根节点开始,根据新节点的键值与当前节点的键值的比较结果,决定向左子树还是右子树移动。

    • 如果新节点的键值小于当前节点的键值,如果当前节点没有左子树,则将新节点插入到当前节点的左子树,否则向左子树移动。

    • 如果新节点的键值大于当前节点的键值,如果当前节点没有右子树,则将新节点插入到当前节点的右子树,否则向右子树移动。

    • 重复上述步骤,直到找到一个空位置,将新节点插入到该位置。

删除逻辑:

1.递归查找待删除节点

  • 如果待删除节点的键值小于当前节点的键值,递归地在左子树中查找并删除。

  • 如果待删除节点的键值大于当前节点的键值,递归地在右子树中查找并删除。

2.找到待删除节点

删除操作的步骤可以分为以下几种情况:

  1. 待删除节点是叶子节点(没有子节点):直接删除该节点。

  2. 待删除节点只有一个子节点:用其子节点替换该节点。

  3. 待删除节点有两个子节点:

    • 找到右子树中的最小节点(即后继节点)。

    • 用后继节点的键值替换待删除节点的键值。

    • 删除后继节点(后继节点要么是叶子节点,要么只有一个右子节点)。

假设我们有以下二叉搜索树:

        50
       /  \
     30    70
    /  \  /  \
  20  40 60  80

删除节点 20

  1. 找到键值为 20 的节点。

  2. 该节点是叶子节点,直接删除。

删除后的树:

        50
       /  \
     30    70
       \  /  \
       40 60  80

删除节点 30

  1. 找到键值为 30 的节点。

  2. 该节点有一个右子节点 40,用 40 替换 30。

删除后的树:

        50
       /  \
     40    70
          /  \
         60  80

删除节点 50

  1. 找到键值为 50 的节点。

  2. 该节点有两个子节点,找到右子树中的最小节点 60(即后继节点)。

  3. 用 60 替换 50。

  4. 删除右子树中的 60。

删除后的树:

        60
       /  \
     40    70
             \
             80

示例:

class TreeNode:
    def __init__(self,key):
        self.key = key
        self.left = None
        self.right =None
class BSTree:
    def __init__(self):
        self.root = None
    def insert(self,key):
        #如果树为空,直接将新节点作为根节点
        if self.root is None:
            self.root = TreeNode(key)
        else:
            self._insert(self.root,key)
    def _insert(self,node,key):
        #如果新的节点的键值小于当前节点的键值,如果当前节点,没有左子树,则将新节点插入到当前节点的左子树,否则向左子树移动
        if key < node.key:
            if node.left is None:
                node.left = TreeNode(key)
            else:
                self._insert(node.left,key)
        #如果新的节点的键值大于当前节点的键值,如果当前节点,没有右子树,则将新节点插入到当前节点的右子树,否则向右子树移动
        elif key > node.key:
            if node.right is None:
                node.right = TreeNode(key)
            else:
                self._insert(node.right,key)
    def search(self,key):
        return self._search(self.root,key)
    def _search(self,node,key):
        if node is None or node.key == key:
            return node
        if key < node.key:
            return self._search(node.left,key)
        elif key > node.key:
            return self._search(node.right,key)
    def inorder(self):
        result = []
        self._inorder(self.root,result)
        return result
    def _inorder(self,node,result):
        if node is not None:
            self._inorder(node.left,result)
            result.append(node.key)
            self._inorder(node.right,result)
    def preorder(self):
        result = []
        self._preorder(self.root,result)
        return result
    def _preorder(self,node,result):
        if node is not None:
            result.append(node.key)
            self._preorder(node.left,result)
            self._preorder(node.right,result)
    def postorder(self):
        result = []
        self._postorder(self.root,result)
        return result
    def _postorder(self,node,result):
        if node is not None:
            self._postorder(node.left,result)
            self._postorder(node.right,result)
            result.append(node.key)
    def delete(self,key):
        self.root = self._delete(self.root,key)
    def _delete(self,node,key):
        if node is None:
            return node
        if key < node.key:
            node.left = self._delete(node.left,key)
        elif key > node.key:
            node.right = self._delete(node.right,key)
        else:
            if node.left is None and node.right is None:
                return None
            elif node.left is None:
                return node.right
            elif node.right is None:
                return node.left
            #如果当前节点有两个子节点,就找右子树的最小值
            else:
                min_value_node = self._min_value_node(node.right)
                node.key = min_value_node.key
                node.right =  self._delete(node.right,min_value_node.key)
        return node

    def _min_value_node(self,node):
        current = node
        while current.left is not None:
            current = current.left
        return current
if __name__ == '__main__':
    bst = BSTree()
    bst.insert(5)
    bst.insert(3)
    bst.insert(7)
    bst.insert(4)
    bst.insert(2)
    print(bst.search(7).key)
    bst.delete(7)
    bst.delete(5)
    res1 = bst.inorder()
    print(res1)
    # res2 = bst.preorder()
    # print(res2)
    # res3 = bst.postorder()
    # print(res3)

#7
#[2, 3, 4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值