- 核心功能定位
- Spark:以内存计算为核心,专注于快速数据处理,擅长迭代计算、实时流处理和交互式查询,支持批处理、流处理、机器学习、图计算等多种工作负载,提供统一的技术栈。
- Hadoop:最初设计目的是解决海量数据的存储和批处理问题,HDFS 提供高可靠性的数据存储,MapReduce 提供批处理能力,适合处理大规模数据的离线批处理。
- 数据处理速度
- Spark:基于内存计算,数据在内存中缓存和处理,避免了频繁的磁盘 I/O,处理速度比 Hadoop 快得多,尤其是在迭代计算场景中,速度可提升数十倍甚至上百倍。
- Hadoop:MapReduce 基于磁盘进行数据交换,每次任务执行都需要从磁盘读取和写入数据,导致处理速度较慢,特别是对于需要多次迭代的计算任务。
- 编程模型
- Spark:提供更简洁、灵活的 API,支持 Java、Scala、Python、R 等多种编程语言,使用 RDD(弹性分布式数据集)、DataFrame、Dataset 等抽象概念,使代码编写更简单,开发效率更高。
- Hadoop:MapReduce 编程模型相对复杂,需要编写 Mapper 和 Reducer 等组件,代码量较大,开发难度较高,尤其是对于复杂的计算逻辑。
- 实时处理能力
- Spark:Spark Streaming 可以处理实时数据流,将流数据分割成小的批次进行处理,实现准实时分析,且能与 Spark 的其他组件无缝集成,适合实时数据处理场景。
- Hadoop:原生 MapReduce 不支持实时数据处理,虽然 Hadoop 生态系统中有 Storm 等实时处理框架,但与 Spark 相比,实时处理的集成性和易用性较差。
- 生态系统
- Spark:拥有自己独立的生态系统,包括 Spark SQL、Spark Streaming、MLlib、GraphX 等组件,可一站式解决多种数据处理需求,也能与 Hadoop 生态系统中的组件如 HDFS、Hive 等集成。
- Hadoop:拥有庞大的生态系统,HDFS 用于存储,MapReduce 用于计算,Hive 用于数据仓库,Pig 用于数据流处理,HBase 用于分布式数据库等,各组件之间需要进行复杂的集成和配置。
- 资源管理
- Spark:可运行在多种资源管理器上,如 Hadoop YARN、Apache Mesos 等,也可独立运行,资源分配更加灵活高效。
- Hadoop:MapReduce 依赖 Hadoop YARN 进行资源管理和调度,资源利用率相对较低,尤其是在处理小任务时,开销较大。
- 适用场景
- Spark:适合需要快速迭代计算、实时数据处理、复杂数据分析(如机器学习、图计算)的场景,以及对处理速度要求较高的交互式查询。
- Hadoop:适合大规模数据的离线批处理,如数据仓库、日志分析等对处理时间要求不高的场景,以及需要高可靠性数据存储的场景