数据处理和分析之分类算法:神经网络(Neural Networks):超参数调优与正则化技术
数据处理和分析之分类算法:神经网络基础
神经网络的结构与功能
神经网络是一种模仿人脑神经元结构的计算模型,用于处理复杂的模式识别和数据分类任务。它由大量的节点(或称为神经元)组成,这些节点通过连接权重相互连接,形成多层结构,包括输入层、隐藏层和输出层。
输入层
输入层接收原始数据,每个节点对应数据的一个特征。
隐藏层
隐藏层是神经网络的核心,包含多个神经元,这些神经元通过非线性激活函数处理信息,使网络能够学习复杂的特征表示。
输出层
输出层产生网络的最终预测,对于分类任务,输出层通常包含与类别数量相等的节点,每个节点表示属于该类别的概率。
激活函数
激活函数引入非线性,常见的激活函数有ReLU、Sigmoid和Tanh。
权重与偏置
权重表示节点之间的连接强度,偏置允许模型在没有输入时也能产生