输入点的排列不变性,PointNet的优点,简单高效
典型的卷积架构需要高度规则的输入数据格式,如图像网格或3D体素,以便执行权重共享和其他内核优化。由于点云或网格不是规则格式,大多数研究人员通常在将这些数据输入深度网络架构之前将其转换为规则的3D体素网格或图像集合(例如视图)。然而,这种数据表示转换使生成的数据变得不必要的庞大,同时还引入了量化工件,可能会模糊数据的自然不变性。
不需要体素化或渲染。它是一种学习全局和局部点特征的统一架构,为许多3D识别任务提供了一种简单、高效和有效的方法。
点云表示为3D点的集合{Pi| i = 1,…, n},其中每个点Pi是其(x, y, z)坐标加上额外的特征通道(如颜色,法线等)的向量。为了简单明了,除非另有说明,否则我们只使用(x, y, z)坐标
该分类网络以n个点作为输入,进行输入和特征变换,然后通过最大池化对点特征进行聚合。输出是k个类的分类分数。分割网络是分类网络的扩展。它连接全局和局部特征,并输出每个点的分数。