U-Net:用于生物医学图像分割的卷积网络

以往模型的两个缺点:1.速度非常慢,因为网络必须为每个补丁单独运行,并且由于补丁重叠而存在大量冗余。2.定位精度和上下文的使用之间存在权衡。较大的补丁需要更多的最大池层,这会降低定位精度,而较小的补丁允许网络仅看到很少的上下文。

全卷积网络架构的提出

1.主要思想:通过连续层来补充通常的契约网络,其中池化算子被上采样算子取代。因此,这些层提高了输出的分辨率。为了定位,来自收缩路径的高分辨率特征与上采样的特征相结合输出。然后,连续的卷积层可以学习根据这些信息组合更精确的输出。

2.重要修改部分:在上采样部分,有大量特征通道,允许网络将上下文信息传播到更高分辨率的层。因此,扩张路径或多或少与收缩路径对称,并产生 U 形架构。

该网络没有任何完全连接的层,仅使用每个卷积的有效部分,即分割图仅包含输入图像中可用的完整上下文的像素。允许通过重叠平铺策略对任意大图像进行无缝分割。

为了预测图像边界区域中的像素,通过镜像输入图像来推断丢失的上下文,减少分辨率受到 GPU 内存的限制。

3.数据增强:要平移和旋转不变,通过对可用的训练图像应用弹性变形来使用过多的数据增强。这使得网络能够学习此类变形的不变性,而无需在带注释的图像语料库中查看这些变换。这在生物医学分割中尤其重要,因为变形曾经是组织中最常见的变化,并且可以有效地模拟真实的变形。

4.网络:该架构由收缩路径(左侧)和扩展路径(右侧)组成。收缩路径遵循卷积网络的典型架构。它由两个 3x3 卷积(未填充卷积)的重复应用组成,每个卷积后跟一个修正线性单元 (ReLU) 和一个步长为 2 的 2x2 最大池化操作,用于下采样。在每个下采样步骤中,我们将特征通道的数量加倍。扩展路径中的每一步都包含对特征图进行上采样,然后进行 2x2 卷积(“上卷积”),将特征通道数量减半,与收缩路径中相应裁剪的特征图进行串联,以及两个 3x3卷积,每个卷积后跟一个 ReLU。由于每次卷积都会丢失边界像素,因此需要进行裁剪。在最后一层,使用 1x1 卷积将每个 64 分量特征向量映射到所需数量的类。 

5.训练:

LOSS在不断下降

6.问题:但是在测试集上面出现了背景太多的情况,明显测试集的分类图片错误,正在调试模型解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值