递推项严格的定义:像斐波那契数列f(n)=f(n-1)+f(n-2)这样每一项都符合这个公式
一:由斐波那契数列引入
递推式和线性代数的结合
- 每一个严格递推式都可以写成这样的形式
- 因为斐波那契数列的递推式结尾为f(n-2),所以后面要乘的是2x2的矩阵
- 我们可以多列几个上述式子可以把矩阵(abcd)求出来
当我们写一直到|Fn,Fn-1|时
- 一项一项的带入可得到 |Fn,Fn-1|=|F2,F1| * ∣a∣n−2|a|^{n-2}∣a∣n−2,其中|a|为上述(abcd)矩阵
- 具体运算: 我们要求Fn是时只需要知道(1x)+(1z)的值(线性代数的运算)
根据上述等式可以推出一个通式:
-
其中 i 取决于递推式的最后一项是(n-几)
-
此时我们发现我们要特别快的求斐波那契数列的第n项就需要快速的求∣a∣n−2|a|^{n-2}∣a∣n−2,现在问题转换为如何快速求一个矩阵的n次方最快,我们可以将矩阵a当作一个数字,现在要知道一个数字的n次方怎么算最快
引入快速幂(O(logn))
整数类型的快速幂
- 运用到二进制和位运算的思想
- 将幂再逻辑上转换为二进制
- n按位决定a乘不乘到ans中
public static long fastPow(int a, int n) {
long ans = 1;
while (n > 0) {
if ((n & 1) == 1) { // 判断最低位是否为1
ans *= a;
}
a *= a; // a 平方
n >>= 1; // n 右移一位
}
return ans;
}
矩阵类型的快速幂
- 与整数类型的区别:1.要初始化一个单位矩阵2.计算矩阵的幂此时要定义product()方法解决
//求矩阵m的p次方的方法
public static int[][] matrixPow(int[][] m, int p) {
int[][] res = new int[m.length][m[0].length];
//初始化成单位矩阵
for (int i = 0; i < res.length; i++) {
res[i][i] = 1;
}
// res = 矩阵中的1(单位矩阵)
int[][] t = m;// 矩阵1次方
while(p != 0) {
if ((p & 1) == 1) {
res = product(res, t);//逻辑上等价于res*=t
}
t = product(t, t);//逻辑上等价于t*=t
p >>= 1
}
return res;
}
public static int[][] product(int[][] a, int[][] b) {
int n = a.length;
int m = b[0].length;
int k = a[0].length; // a的列数同时也是b的行数
int[][] ans = new int[n][m];
for(int i = 0 ; i < n; i++) {
for(int j = 0 ; j < m;j++) {
for(int c = 0; c < k; c++) {
ans[i][j] += a[i][c] * b[c][j];
}
}
}
return ans;
}
完整代码
剩余代码为"矩阵类型的快速幂"代码
public static int f3(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2) {
return 1;
}
// [ 1 ,1 ]
// [ 1, 0 ]
int[][] base = {
{ 1, 1 },
{ 1, 0 }
};
int[][] res = matrixPower(base, n - 2);
return 1*res[0][0] + 1*res[1][0];
}
二:面试题
题目:第一年农场有一只成熟的母牛A,往后的每一年:
1.成熟的母牛会省一只母牛
2.每只新的母牛都在生下来的第三年成熟
3每只母牛都不会死
解题思路
- 根据本题目我们可以写出递推式:F(n)=F(n-1)+F(n-3) 因为每年牛的数量等于去年牛的数量加3年前存在的牛生的牛的数量
- 我们可以发现这个递推式是个严格递推式所以他一定可以以O(logn) 的时间复杂度解决
- 和上面一题一样,区别在于递推式的最后一项为(n-3)所以我们的矩阵为3x3的矩阵
主要代码:
其余代码与上一题一样
public static int c3(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2 || n == 3) {
return n;
}
int[][] base = {
{ 1, 1, 0 },
{ 0, 0, 1 },
{ 1, 0, 0 } };
int[][] res = matrixPower(base, n - 3);
return 3 * res[0][0] + 2 * res[1][0] + res[2][0];
}