自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 基于监督对比学习的多模态新闻分类方法研究

随着互联网和移动通信技术的快速发展,新闻数据在各大平台呈爆炸式增长,且数量众多、种类多样,需要科学的方法进行有效的分类管理。然而,目前在新闻分类研究领域,主要集中于新闻文本的算法研究,只有部分研究在多模态新闻分类算法上,而其中大多数研究仅仅将图像特征与文本特征进行简单的拼接,没有考虑不同模态之间的内在联系,然而在新闻当中文本与图片都是相辅相成、紧密联系的。

2024-10-21 15:38:50 1687

原创 基于 AFTCN 的文本分类技术在诈骗电话文本识别中的方法研究与实现

在信息技术高速发展的今天,互联网和通信技术极大地丰富了人们的生活,同时也带来了新的挑战。尤其是电话诈骗问题日益严峻,不仅破坏了社会的稳定秩序,更对公众的财产安全和心理健康构成了严重威胁。因此,开发有效的诈骗电话文本分类技术,以识别和预防电话诈骗,成为了迫切需要解决的问题。本研究旨在通过构建一个高效的诈骗电话文本分类模型,对诈骗电话文本进行自动检测和分类,从而有效辨识出潜在的诈骗电话,减少诈骗案件的发生。

2024-11-28 22:07:37 1581 2

原创 基于双重三元组网络的混淆文本情感分类方法

随着社交媒体和电子商务的兴起,互联网上涌现了大量含有主观情感色彩的评论文本,分析这些文本所蕴含的情感信息,可以为政府决策、社会治理和商业实践等领域提供重要的见解和指导。然而,自然采集的数据集中存在一些表达模糊和观点不明的混淆文本,影响着情感分类模型的性能效果。模型在训练阶段往往倾向学习易分类的文本,导致对混淆文本的分类表现不佳。

2024-10-27 22:14:25 1211

原创 基于改进 ResNeXt50 网络模型的垃圾分类识别方法

本文首先综述了国内外生活垃圾分类的社会背景及深度学习算法在此领域的最新研究动态。鉴于生活垃圾分类面临的诸多挑战与效率瓶颈,本文将深度学习技术在图像识别方面的应用作为研究重点,深入探讨了运用先进深度学习理论于图像分类问题的潜能与策略。通过实施基于经典卷积神经网络模型的实验分析,对比了不同模型在处理垃圾分类任务上的性能表现,并针对所选模型,通过集成注意力机制等创新性技术进行改进,旨在增强网络的泛化性能和降低过拟合倾向,从而有效提升了分类精度与处理效率。

2024-10-25 17:32:26 2223

原创 基于 U-Net 的结构纹理图像修复方法研究与实现

在本章中,构建了一种基于U-Net的结构纹理图像修复方法。该网络使用生成对抗网络作为基本框架来实现,破损图像用 Input 来指代,Edge 用来指代破损图像的边缘图,网络的核心结构是双分支 U-Net 网络,CBAM 用来指代混合注意力模块,判别器是一个二分支结构,Detected Edge 用来指代修复图像边缘图的灰度图。其网络结构如下。

2024-10-23 12:10:58 1839 1

原创 基于时频一致性的时间序列自监督对比预训练

预训练与目标域之间存在的潜在不匹配(例如时间的动态变化、快速发展的趋势、长期和短周期的影响,),时间序列上的预训练存在独特的挑战,这可能会导致下游性能不佳。虽然领域自适应方法可以减轻这些变化,但大多数方法需要直接来自目标领域的示例,这使得它们不适合预训练。需要实现能够适应具有不同时间动态的目标域,并且能够在预训练期间无需任何目标领域示例的情况下做到这一点。因此,我们假设时间-频率一致性(TF-C)—将一个样本的基于时间的邻域嵌入到其基于频率的邻域附近——这对于预训练是理想的。

2024-10-22 15:28:14 907

原创 中文电子病历命名实体识别与知识图谱构建的研究与实现

摘 要随着信息技术的不断进步,医疗行业正经历一场深刻的变革,智能医疗技术成为推动这一行业向前发展的关键动力。中文电子病历,作为医疗信息化进程中的重要成就,积累了海量的医疗数据,不仅包含了丰富的医学知识,还蕴含了宝贵的临床经验。然而,由于电子病历数据大多以非结构化文本的形式存在,如何从中快速并准确地提取出富有价值的信息,并将其转化成易于理解和利用的知识,成为迫切需要解决的问题。为高效地将中文电子病历中的数据转化为结构化信息,并深度挖掘其中蕴含的丰富诊疗知识与临床经验,本文主要研究内容包括:

2024-10-19 18:10:57 2394

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除