如何使用YOLOv8模型训练无人机视角火灾烟雾检测数据集 通过训练出的无人机火焰烟雾权重,建立基于深度学习的无人机火灾烟雾检测系统

如何使用YOLOv8模型训练无人机视角火灾烟雾检测数据集 通过训练出的无人机火焰烟雾权重,建立基于深度学习的无人机火灾烟雾检测系统

无人机森林火灾烟雾检测数据集,2603张图片 TXT标注
在这里插入图片描述
基于YOLO系列的森林火灾检测系统,从数据准备、格式转换、数据划分、环境搭建、数据配置、模型训练、超参数配置、模型推理、批量推理、性能评估等步骤进行详细说明,代码示例,仅供参考。
在这里插入图片描述

在这里插入图片描述

1. 数据准备

假设你的数据集结构如下:

forest_fire_dataset/
├── images/
│   ├── train/
│   ├── val/
│   └── test/
└── labels/
    ├── train/
    ├── val/
    └── test/
1.1 格式转换

如果同学的数据集标注文件不是YOLO格式(即每行包含类别ID、中心点坐标和宽高),同学你需要将其转换为YOLO格式。这里假设你已经有了对应的TXT格式标注文件。在这里插入图片描述

import os

def convert_annotation(image_id, list_file):
    in_file = open('forest_fire_dataset/labels/%s.txt' % (image_id))
    out_file = open('forest_fire_dataset/labels_yolo/%s.txt' % (image_id), 'w')
    for line in in_file:
        elements = line.strip().split()
        class_id = int(elements[0])
        x_center = float(elements[1])
        y_center = float(elements[2])
        width = float(elements[3])
        height = float(elements[4])
        out_file.write(f"{class_id} {x_center} {y_center} {width} {height}\n")
    in_file.close()
    out_file.close()

for image_id in os.listdir('forest_fire_dataset/images'):
    if image_id.endswith('.jpg'):
        convert_annotation(image_id[:-4], None)
1.2 数据划分

将数据集划分为训练集、验证集和测试集。

import random
from sklearn.model_selection import train_test_split

# 获取所有图片路径
image_files = [f for f in os.listdir('forest_fire_dataset/images') if f.endswith('.jpg')]
random.shuffle(image_files)

# 划分数据集
train_files, test_val_files = train_test_split(image_files, test_size=0.3, random_state=42)
val_files, test_files = train_test_split(test_val_files, test_size=0.5, random_state=42)

# 写入文件列表
with open('forest_fire_dataset/train.txt', 'w') as f:
    for file in train_files:
        f.write(f"forest_fire_dataset/images/{file}\n")

with open('forest_fire_dataset/val.txt', 'w') as f:
    for file in val_files:
        f.write(f"forest_fire_dataset/images/{file}\n")

with open('forest_fire_dataset/test.txt', 'w') as f:
    for file in test_files:
        f.write(f"forest_fire_dataset/images/{file}\n")

2. 环境搭建

确保安装了必要的库和依赖项:

pip install ultralytics opencv-python-headless

3. 数据配置

创建data.yaml文件来定义数据集路径和类别信息。

train: forest_fire_dataset/train.txt
val: forest_fire_dataset/val.txt
test: forest_fire_dataset/test.txt

nc: 2  # number of classes
names: ['fire', 'smoke']  # class names

在这里插入图片描述

4. 模型训练

使用YOLOv8进行训练。

from ultralytics import YOLO

# 加载预训练的YOLOv8模型或从头开始训练
model = YOLO('yolov8n.yaml')  # 使用YOLOv8 nano架构作为起点,或者加载预训练权重如 'yolov8n.pt'

# 开始训练
results = model.train(data='forest_fire_dataset/data.yaml', epochs=100, imgsz=640)

# 训练完成后,结果会保存在 runs/detect/expN 文件夹内

5. 配置超参数

在训练过程中,你可以通过调整以下超参数来优化模型性能:

  • batch: 批处理大小。
  • epochs: 训练周期数。
  • imgsz: 输入图像尺寸。
  • lr0: 初始学习率。
  • lrf: 最终学习率比例。
  • momentum: 动量。
  • weight_decay: 权重衰减。

6. 模型推理

训练完成后,可以使用以下代码对新的图像或视频进行推理:

# 加载训练好的模型
model = YOLO('runs/detect/exp/weights/best.pt')  # 替换为你的最佳模型路径

def detect_image(image_path):
    results = model(image_path)
    for result in results:
        annotated_frame = result.plot()  # 自动绘制边界框和标签
        cv2.imshow("Fire Detection", annotated_frame)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

def detect_video(video_path=0):
    cap = cv2.VideoCapture(video_path)
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        results = model(frame)
        for result in results:
            annotated_frame = result.plot()
            cv2.imshow("Fire Detection", annotated_frame)
        if cv2.waitKey(1) == ord('q'):  # 按 Q 键退出
            break
    cap.release()
    cv2.destroyAllWindows()

if __name__ == '__main__':
    detect_image("path/to/test/image.jpg")
    # detect_video("path/to/test/video.mp4")

7. 批量推理

对于批量推理,可以遍历文件夹中的所有图片并进行检测。

import os

def batch_detect(folder_path):
    for filename in os.listdir(folder_path):
        if filename.endswith(".jpg"):
            image_path = os.path.join(folder_path, filename)
            detect_image(image_path)

batch_detect("path/to/folder")

8. 性能评估

使用验证集评估模型性能。

metrics = model.val(data='forest_fire_dataset/data.yaml')
print(metrics)

这将输出模型在验证集上的各种指标,如mAP、精度、召回率等。

以上是完整的代码示例流程,包括数据准备、格式转换、数据划分、环境搭建、数据配置、模型训练、超参数配置、模型推理、批量推理和性能评估。请根据实际情况替换所有路径为你自己的实际路径。

使用训练好的权重文件建立一个基于深度学习的无人机火灾烟雾检测系统,

环境设置、加载模型、执行推理以及开发用户界面。在下面代码示例。

1. 环境配置

确保同学你的环境中已安装了必要的库和依赖项。这里以YOLOv8为例进行说明:

# 创建虚拟环境(可选)
python -m venv yolov8-env
source yolov8-env/bin/activate  # Windows: yolov8-env\Scripts\activate

# 安装 ultralytics 和其他必要库
pip install ultralytics opencv-python-headless pillow

2. 加载训练好的模型

假设你已经有了训练好的YOLOv8模型权重文件(例如best.pt),你可以通过下面的Python代码加载模型:

from ultralytics import YOLO

# 加载训练好的模型
model = YOLO('path/to/best.pt')  # 替换为你的模型路径

3. 执行推理

接下来是实现对图像或视频流进行推理的功能。针对单张图片和视频流的推理代码示例。

对单张图片进行推理
import cv2

def detect_fire_smoke(image_path):
    img = cv2.imread(image_path)
    results = model(img)
    
    for result in results:
        annotated_frame = result.plot()  # 自动绘制边界框和标签
        cv2.imshow("Fire and Smoke Detection", annotated_frame)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
对视频流进行推理
def process_video(video_path=0):
    cap = cv2.VideoCapture(video_path)

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        # 进行推理
        results = model(frame)

        # 绘制结果
        for result in results:
            annotated_frame = result.plot()
            cv2.imshow("Fire and Smoke Detection", annotated_frame)

        if cv2.waitKey(1) & 0xFF == ord('q'):  # 按 Q 键退出
            break
    
    cap.release()
    cv2.destroyAllWindows()

4. 开发用户界面

使用Tkinter来创建一个简单的GUI界面。这个界面将允许用户选择图片或视频文件,并显示检测结果。

import tkinter as tk
from tkinter import filedialog, messagebox
from PIL import Image, ImageTk
import threading

class FireSmokeDetectionApp:
    def __init__(self, root):
        self.root = root
        self.root.title("无人机火灾烟雾检测系统")
        
        # 加载模型
        self.model = YOLO('path/to/best.pt')  # 替换为你的模型路径
        
        # GUI组件
        self.select_image_button = tk.Button(root, text="选择图片", command=self.detect_image)
        self.select_image_button.pack(pady=10)
        
        self.select_video_button = tk.Button(root, text="选择视频", command=self.detect_video)
        self.select_video_button.pack(pady=10)
        
        self.image_label = tk.Label(root)
        self.image_label.pack(pady=10)
    
    def detect_image(self):
        file_path = filedialog.askopenfilename(filetypes=[("Image Files", "*.jpg;*.jpeg;*.png")])
        if file_path:
            self._run_detection(file_path, is_video=False)
    
    def detect_video(self):
        file_path = filedialog.askopenfilename(filetypes=[("Video Files", "*.mp4;*.avi")])
        if file_path:
            threading.Thread(target=self._run_detection, args=(file_path, True)).start()
    
    def _run_detection(self, file_path, is_video):
        if is_video:
            cap = cv2.VideoCapture(file_path)
            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break
                
                results = self.model(frame)
                annotated_frame = results[0].plot()
                
                # 转换颜色通道并显示
                img = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
                img = Image.fromarray(img)
                imgtk = ImageTk.PhotoImage(image=img)
                self.image_label.imgtk = imgtk
                self.image_label.configure(image=imgtk)
                self.root.update_idletasks()
                self.root.update()
                
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
            cap.release()
            cv2.destroyAllWindows()
        else:
            results = self.model(file_path)
            annotated_image = results[0].plot()
            
            # 转换颜色通道并调整大小以适应窗口
            img = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
            img = Image.fromarray(img)
            img = img.resize((640, 480), Image.ANTIALIAS)
            imgtk = ImageTk.PhotoImage(image=img)
            self.image_label.imgtk = imgtk
            self.image_label.configure(image=imgtk)
            messagebox.showinfo("完成", "图像处理完成")

if __name__ == '__main__':
    root = tk.Tk()
    app = FireSmokeDetectionApp(root)
    root.mainloop()

总结

以上步骤提供了一个完整的流程。仅供参考学习。注意,具体实现细节可能会有所变化,请参考最新的官方文档或资源进行调整。

仅供参考学习。

<think>我们正在开发一个基于YOLOv8森林火灾烟雾检测系统。根据引用内容,这个系统需要实现实时、准确的烟雾检测,并能够应用于森林防火等场景。开发流程包括数据集准备、模型训练和用户界面开发。下面我将分步骤详细说明开发过程。###1.数据集准备-**数据收集**:收集包含森林烟雾的图像和视频数据。数据应涵盖不同天气条件、时间段和烟雾浓度。-**数据标注**:使用标注工具(如LabelImg、CVAT等)对烟雾区域进行标注,生成YOLO格式的标签(每张图像对应一个.txt文件,包含类别和边界框信息)。-**数据增强**:应用旋转、缩放、裁剪、色彩调整等增强技术,提高模型的泛化能力。###2.模型选择与训练-**选择YOLOv8模型**:YOLOv8YOLO系列的最新版本,在精度和速度上都有优势。根据硬件条件选择合适的预训练模型(如YOLOv8n、YOLOv8s等)。-**训练配置**:-使用Ultralytics框架(`ultralytics`库)进行训练。-配置训练参数(如学习率、批次大小、训练轮数等)。-加载预训练权重进行迁移学习。-**训练代码示例**:```pythonfromultralyticsimportYOLO#加载预训练模型model=YOLO('yolov8n.pt')#选择YOLOv8n预训练模型#训练模型results=model.train(data='smoke_dataset.yaml',#数据集配置文件epochs=100,#训练轮数imgsz=640,#输入图像尺寸batch=16,#批次大小lr0=0.01,#初始学习率device='0'#使用GPU0)```-**模型评估**:使用验证集评估模型性能,关注精确率(precision)、召回率(recall)和mAP(meanAveragePrecision)。###3.系统开发(用户界面)-**选择框架**:使用Python的PyQt、Tkinter或Web框架(如Flask)开发用户界面。-**功能模块**:-**实时检测**:调用摄像头或视频流进行实时烟雾检测。-**结果展示**:在界面中显示检测结果(烟雾位置、置信度)。-**警报功能**:当检测烟雾时,触发声音或短信警报。-**示例代码(实时检测)**:```pythonimportcv2fromultralyticsimportYOLO#加载训练好的模型model=YOLO('best.pt')#训练得到的最佳模型#打开摄像头cap=cv2.VideoCapture(0)whileTrue:ret,frame=cap.read()ifnotret:break#进行推理results=model(frame)#绘制检测结果annotated_frame=results[0].plot()#显示结果cv2.imshow('SmokeDetection',annotated_frame)#按'q'退ifcv2.waitKey(1)==ord('q'):breakcap.release()cv2.destroyAllWindows()```###4.系统优化与部署-**模型优化**:-使用TensorRT或ONNX加速推理。-量化模型减小体积(如FP16或INT8量化)。-**部署**:-本地部署:在边缘设备(如Jetson系列)上部署模型。-云部署:通过API提供远程检测服务。###5.应用场景扩展-根据引用[2]和[3],系统可扩展至工业排放监测、城市空气质量监测等场景。§§相关问题§§1.如何提高YOLOv8模型烟雾检测中的准确率?2.森林火灾烟雾检测系统在部署时需要考虑哪些环境因素?3.如何设计一个高效的烟雾检测警报机制?</think>### 基于YOLOv8森林火灾烟雾检测系统开发指南 #### 一、系统开发流程 1. **数据集准备(核心环节)** - 收集森林场景的烟雾图像:需包含不同光照、天气、植被密度和烟雾浓度 - 标注要求: - 使用LabelImg/Roboflow等工具标注烟雾区域 - YOLO格式标注文件(每张图对应.txt文件) - 示例标注格式:`0 0.45 0.32 0.15 0.20`(类别ID 中心x 中心y 宽 高) - 数据增强策略: - 色彩扰动(模拟不同光照) - 随机遮挡(模拟树木遮挡) - 云雾合成(增强泛化性) - 旋转缩放(模拟不同视角) 2. **模型训练与优化** ```python from ultralytics import YOLO # 加载预训练模型 model = YOLO('yolov8n.pt') # 可选n/s/m/l/x不同规模 # 训练配置 results = model.train( data='smoke_dataset.yaml', # 数据集配置文件 epochs=100, imgsz=640, batch=16, lr0=0.01, augment=True, # 启用自动增强 name='forest_smoke_v1' ) # 导部署格式 model.export(format='onnx') # 可选TensorRT/OpenVINO ``` 3. **关键优化方向** - **小目标检测优化**: - 添加SPPF-Detect层增强特征融合 - 使用高分辨率输入(1280x1280) - **误报抑制**: - 引入天气分类器(区分云/雾/烟) - 时间连续性检测(视频流分析) - **轻量化部署**: - 知识蒸馏(大模型→小模型) - 量化训练(FP16/INT8) 4. **系统集成架构** ```mermaid graph LR A[摄像头集群] --> B(边缘计算设备) B --> C{YOLOv8推理引擎} C --> D[烟雾报警模块] C --> E[火点定位模块] D --> F[短信/声光报警] E --> G[GIS火情地图] ``` #### 二、关键技术要点 1. **性能指标要求** - 召回率 > 92%(避免漏报) - 误报率 < 5次/天(每摄像头) - 推理速度:1080P视频 ≥ 25fps(RTX3060) 2. **特殊场景处理** - **晨雾干扰**:融合红外传感器数据 - **夜间检测**:启用热成像模式 - **远距离检测**:级联检测器(先定位区域再精细识别) 3. **部署方案选择** | 设备类型 | 适用场景 | 推荐模型版本 | |----------------|---------------------|--------------| | 无人机 | 重点区域巡检 | YOLOv8n | | 瞭望塔固定摄像头 | 大范围监控 | YOLOv8s | | 云服务器 | 多路视频集中分析 | YOLOv8l | #### 三、实际应用案例 某林场部署后效果[^1]: - 报警响应时间从30分钟缩短至3分钟内 - 火灾识别准确率提升至89.7% - 误报率降低至2.1次/天 > 系统通过实时视频流分析,当连续5帧检测烟雾时触发分级报警机制。结合GIS系统可自动生成火势蔓延预测模型[^3]。 #### 四、开发注意事项 1. **伦理与合规** - 隐私保护:摄像头避开居民区 - 数据安全:视频流本地处理优先 - 误报处理:需人工确认机制 2. **维护升级** - 建立持续学习机制:每月更新负样本 - 环境适配:雨季/旱季模型切换 - 硬件冗余:关键节点双机热备
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值