「玩转Python」搭建远程监控系统,小偷?不存在的!

  • 装好系统的树莓派 3B+ 一只(充电器、CPU散热风扇等)

在开始之前照常先秀一下这半成品的监控系统,是不是丑到爆!?

监控系统


市面上有很多开源的摄像头管理软件,比如 motion、mjpg-streamer,当然我们也可以用 Python 自己实现更智能的监控系统。

下面,我们分别来介绍以上三种方案。

motion

安装:

sudo apt-get install motion

打开 motion daemon 守护进程,让他可以一直在后台运行

sudo vim /etc/default/motion

#no修改成yes:

start_motion_daemon=yes

修改 motion 的配置文件:

sudo vim /etc/motion/motion.conf

#deamon off 改成 on

deamon on

#设置分辨率

width 800

height 600

#关闭 localhost 的限制

stream_localhost off

运行 motion:

sudo motion

停止motion:

killall motion 或者 service motion stop

现在我们的摄像头已经变成了一台网络摄像头。在chrome浏览器下访问 http://<树莓派IP>:8081 即可看到摄像头当前拍摄的画面。

不得不说,真的很耗CPU,差不多持续在60%左右,并且有一定的延迟,卡顿特别严重。

mjpg-streamer

先安装依赖:

sudo apt-get install libjpeg8-dev cmake

下载 mjpg-streamer-master 软件:

wget http://github.com/jacksonliam/mjpg-streamer/archive/master.zip

unzip master.zip

cd mjpg-streamer-master/mjpg-streamer-experimental

编辑配置文件

vim plugins/input_raspicam/input_raspicam.c

进去之后搜索fps,也就是按一下/键,然后输入fps,然后回车将fps、高度、宽度修改,参考下图:

然后退出到mjpg-streamer-master/mjpg-streamer-experimental路径,编译:

sudo make clean all

启动摄像头:

//启动普通 USB摄像头

./mjpg_streamer -i “./input_uvc.so” -o “./output_http.so -w ./www”

//启动树莓派专用摄像头

./mjpg_streamer -i “./input_raspicam.so” -o “./output_http.so -w ./www”

//openwrt下启动,8090端口

mjpg_streamer -i “input_uvc.so -f 10 -r 320*240” -o “output_http.so -p 8090 -w www”

如果出现以下错误:

多插拔几次摄像头兴许就可以了。

多参数启动:

sudo mjpg_streamer -i “./input_uvc.so -r 640x480 -f 10 -n” -o “./output_http.so -p 8080 --w ./www”

密码访问 userid:password 改成自己的就可以

sudo mjpg_streamer -i “./input_uvc.so -r 640x480 -f 10 -n” -o “./output_http.so -p 8080 --w ./www -c userid:password”

在浏览器中打开,外网自备穿透:

http://<树莓派IP>:8080

http://<树莓派IP>:8080/?action=stream

最终画面:

这个就流畅多了,CPU差不多也占到五六十的样子,不过无碍,毕竟是4核。

Python 实现

上面两种方式只能做到浏览器监控访问,非局域网还得搭个穿透才能访问,看似华丽,其实并没有实际卵用。

为了更加智能的实现监控告警,下面我们采用Python +OpenCV+Wechat 实现。

安装 OpenCV

安装基础组件:

sudo apt-get update

sudo apt-get install libjpeg-dev libatlas-base-dev libjpeg-dev libtiff5-dev libpng12-dev libqtgui4 libqt4-test libjasper-dev

然后安装 OpenCV:

sudo pip3 install opencv-python

一般情况,你是不可能安装成功的,99.999% 会出现以下错误:

Collecting opencv-python

Downloading https://www.piwheels.org/simple/opencv-python/opencv_python-3.4.4.19-cp35-cp35m-linux_armv7l.whl (7.4MB)

45% |██████████████▍ | 3.3MB 15kB/s eta 0:04:20

THESE PACKAGES DO NOT MATCH THE HASHES FROM THE REQUIREMENTS FILE. If you have updated the package versions, please update the hashes. Otherwise, examine the package contents carefully; someone may have tampered with them.

opencv-python from https://www.piwheels.org/simple/opencv-python/opencv_python-3.4.4.19-cp35-cp35m-linux_armv7l.whl#sha256=329d9d9fdd62b93d44a485aeaab4602c6f5b8555ea8bcc7dbcdc62c90cfe2c3f:

Expected sha256 329d9d9fdd62b93d44a485aeaab4602c6f5b8555ea8bcc7dbcdc62c90cfe2c3f

Got 869c7994c40b84ac09f244f768db9269d52d3265d376441e8516a47f24711ef2

这可能是由于网速太慢了,没有下载完整的文件,所以不完整的文件的md5和期望的不一样。

我们首先下载 whl 文件到本地:

浏览器直接访问就可以

https://www.piwheels.org/simple/opencv-python/opencv_python-3.4.4.19-cp35-cp35m-linux_armv7l.whl

然后上传到树莓派,使用以下命令安装:

sudo pip3 install opencv_python-3.4.4.19-cp35-cp35m-linux_armv7l.whl

如果出现以下代码,说明安装成功:

Processing ./opencv_python-3.4.4.19-cp35-cp35m-linux_armv7l.whl

Requirement already satisfied: numpy>=1.12.1 in /usr/lib/python3/dist-packages (from opencv-python==3.4.4.19)

Installing collected packages: opencv-python

Successfully installed opencv-python-3.4.4.19

智能监控主要代码:

-- coding: utf-8 --

import 进openCV的库

import cv2

import os

import time

from wxpy import *

“”"

树莓派打造智能看门狗

sudo pip3 install opencv-python

sudo pip3 install wechat_sender

“”"

登录微信

bot = Bot()

my_friend = bot.friends().search(‘监控狗’)[0]

调用摄像头检测人脸并截图

def camera(window_name, path_name):

Linux 不显示图形界面

cv2.namedWindow(window_name)

视频来源,来自USB摄像头

cap = cv2.VideoCapture(0)

告诉OpenCV使用人脸识别分类器

classfier = cv2.CascadeClassifier(os.getcwd()+“/haarcascade/haarcascade_frontalface_alt.xml”)

识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组

color = (0, 255, 0)

num = 0

while cap.isOpened():

ok, frame = cap.read() # 读取一帧数据

if not ok:

break

将当前桢图像转换成灰度图像

grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数

faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))

if len(faceRects) > 0: # 大于0则检测到人脸

for faceRect in faceRects: # 单独框出每一张人脸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值