- 博客(10)
- 收藏
- 关注
原创 使用pageHelper实现分页查询
使用字符串拼接concat('%',#{name},'%')保证参数正常传入。常规方法实现分页查询需要进行两个查询操作,分别查询记录数和指定数据。<where>标签,根据查询条件生成关键字,自动补全and 和or。由于sql语句比较复杂,采取将SQL语句配置在XML映射文件中。现有方法必须传入所有条件进行查询,不能根据指定的条件进行查询。<if>标签判断条件是否成立,进行sql拼接。采用pagehalper后代码。运行代码后发现控制台有以下输出。在pom.xml文件中引入。根据传入参数进行条件查询。
2025-07-16 17:46:22
187
原创 员工管理系统 批量插入数据
批量插入数据时需要根据主键进行插入,在传入员工经历集合时并没有传入id,需要从之前传入的员工信息中获取。由于不知道插入数据的数量,采用<foreach>标签遍历传入的集合。我们采用Options注解获取生成的主键并返回。
2025-07-16 08:49:27
165
原创 PCA(主成分分析)
PCA的优缺点优点:去除冗余:消除特征间的线性相关性。降维提速:减少计算量和存储需求。可视化:可将高维数据降至2D/3D便于可视化。缺点:线性假设:无法处理非线性关系(需用核PCA或t-SNE)。解释性弱:主成分是原始特征的线性组合,物理意义不直观。方差≠信息:方差小的方向可能包含重要信息(需谨慎选择k)。PCA的应用场景图像压缩:如人脸识别(Eigenfaces)。
2025-06-16 22:15:15
288
原创 逻辑回归及python实现
逻辑回归模型主要用于二分类问题,即目标变量有两个可能的类别。根据现有数据对分类边界线建立回归公式,以此进行分类。训练时寻找最佳拟合参数,使用最优化算法。logistic回归是先寻找给定的下面这个公式中的:最佳拟合的参数,然后利用sigmoid函数进行分类。Logistic回归的目的是寻找一个非线性函数Sigmoid的最佳拟合参数,求解过程可以由最优化算法来完成。在最优化算法中,最常用的就是梯度上升算法,而梯度上升算法的计算复杂度非常大,所以提出了改进的随机梯度上升算法。
2025-05-20 14:21:22
242
原创 支持向量机
支持向量机(SVM)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解。SVM的核心思想最大间隔分类器:SVM试图找到一个最优超平面(决策边界),使得不同类别之间的间隔最大化分割超平面的形式可以写为:分类器求解:在超平面w ∗ x + b = 0 wx+b=0w∗x+b=0确定的情况下,∣ w ∗ x + b ∣ |wx+b|∣w∗x+b∣能够相对的表示点x距离超平面的远近。而w ∗ x + b w。
2025-05-19 20:15:00
446
原创 朴素贝叶斯算法简介
朴素贝叶斯算法是一种基于贝叶斯定理和特征条件独立假设的分类方法。其核心思想是通过计算给定数据样本下各类别的后验概率,并选择具有最高后验概率的类别作为该样本的预测类别。贝叶斯定理贝叶斯定理描述了如何根据已知的条件概率来计算未知的条件概率。其公式如下:其中,( P(A|B) ) 表示在事件 B 发生的前提下,事件 A 发生的概率。朴素贝叶斯分类器朴素贝叶斯分类器假设特征之间是相互独立的,即在给定类别的情况下,每个特征的出现概率是独立的。
2025-04-29 22:44:50
343
原创 决策树简介+python代码
决策树算法是机器学习领域中的一种重要分类方法,它通过树状结构来进行决策分析。决策树凭借其直观易懂、易于解释的特点,在分类问题中得到了广泛的应用。本文将介绍决策树的基本原理,包括熵和信息熵的相关概念,以及几种经典的决策树算法。提示:以下是本篇文章正文内容,下面案例可供参考本文介绍了决策树算法的原理和Python实现案例,决策树作为一种直观、易理解的模型,适用于各种分类和回归任务,但其在处理复杂、高维数据时可能面临过拟合、对噪声敏感等问题。
2025-04-20 21:52:18
1118
原创 机器学习——PR与ROC曲线
PR(Precision-Recall)曲线与ROC(Receiver Operating Characteristic)曲线是评估二分类模型性能的核心工具,两者从不同角度反映模型表现,适用于不同场景。以假正率(FPR)为横轴,真正率(TPR,即Recall)为纵轴绘制。曲线下面积(AUC)衡量模型区分正负类的能力,AUC值越接近1,分类效果越优。PR与ROC曲线各有侧重:PR曲线聚焦正类预测的精确性与覆盖度,适合不平衡数据;ROC曲线兼顾正负类区分能力,适用于平衡数据或稳健性评估。
2025-04-07 16:11:06
366
原创 K-近邻算法(KNN)+pthon代码实现
K-近邻算法(K-Nearest Neighbors,简称KNN)是一种基于实例的学习算法,它利用训练数据集中与待分类样本最相似的K个样本的类别来判断待分类样本所属的类别。KNN算法的核心思想是:如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别。kNN算法采用测量不同特征值之间距离的方法进行分类对于一个新样本点,根据离他最近的K个样本的的类别(占比最大的类别),来决定新样本点的类别。
2025-03-23 20:23:19
916
原创 机器学习环境配置
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考实现vscode和anaconda的安装,完成机器学习基本环境的配置。
2025-03-03 21:09:55
385
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人