1. 背景介绍
长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(Recurrent Neural Network, RNN),由Hochreiter和Schmidhuber于1997年提出。它主要用于解决传统RNN在处理长序列数据时存在的梯度消失或爆炸问题。LSTM通过在网络结构中加入记忆单元(memory cell)和门控单元(gate units),可以有效地捕捉序列中的长期依赖关系,被广泛应用于语音识别、机器翻译、文本生成、时间序列预测等诸多领域。
1.1 问题由来
传统RNN在处理长序列数据时存在两大难题:
- 梯度消失与爆炸问题:当序列长度很长时,传统的RNN无法保证每一层梯度都平稳传递。梯度消失会导致模型难以捕捉长远的依赖关系,而梯度爆炸则可能导致模型发散。
- 难以捕获长期依赖关系:传统RNN无法存储和更新长期记忆信息,导致模型对序列中前后文信息的依赖不够强烈,预测效果不佳。
针对上述问题,Hochreiter和Schmidhuber设计了LSTM网络,通过引入记忆单元和门控单元,有效缓解了梯度消失和爆炸问题,并增强了模型对长期依赖关系的处理能力。
1.2 问题核心关键点
LSTM的核心创新点在于其独特的门控机制,具体包括以下几个关键点:
- 记忆单元:LSTM通过记忆单元来存储序列中的长期记忆信息,记忆单元的输出在网络中流动,保证信息