自注意力机制的详细工作原理

自注意力机制的详细工作原理

关键词:自注意力机制,Transformer,注意力机制,多头注意力,注意力权重,加权求和,Softmax,Attention,Transformer网络

1. 背景介绍

自注意力机制(Self-Attention Mechanism)是大语言模型(Large Language Models, LLMs)中最为核心和基础的组件之一。Transformer网络就是以自注意力机制为核心的深度学习模型,自发布以来在自然语言处理(Natural Language Processing, NLP)领域取得了革命性的突破,成为处理序列数据的标准架构。自注意力机制通过引入注意力机制,使得模型能够在输入序列中自动关注关键信息,提升模型的表达能力和泛化能力。本文将详细介绍自注意力机制的工作原理,并通过一系列详细的步骤和数学公式,深入浅出地揭示其核心思想和实现细节。

2. 核心概念与联系

2.1 核心概念概述

为了更好地理解自注意力机制,我们首先介绍几个关键概念:

  • 自注意力机制(Self-Attention Mechanism):一种基于注意力机制的处理序列数据的算法,能够自动关注输入序列中对当前位置有用的信息。
  • 多头注意力(Multi-Head Attention):将一个大的自注意力层分成多个并行的小层,每个小层计算不同表示向量的注意力权重,能够从不同
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值