自注意力机制的详细工作原理
关键词:自注意力机制,Transformer,注意力机制,多头注意力,注意力权重,加权求和,Softmax,Attention,Transformer网络
1. 背景介绍
自注意力机制(Self-Attention Mechanism)是大语言模型(Large Language Models, LLMs)中最为核心和基础的组件之一。Transformer网络就是以自注意力机制为核心的深度学习模型,自发布以来在自然语言处理(Natural Language Processing, NLP)领域取得了革命性的突破,成为处理序列数据的标准架构。自注意力机制通过引入注意力机制,使得模型能够在输入序列中自动关注关键信息,提升模型的表达能力和泛化能力。本文将详细介绍自注意力机制的工作原理,并通过一系列详细的步骤和数学公式,深入浅出地揭示其核心思想和实现细节。
2. 核心概念与联系
2.1 核心概念概述
为了更好地理解自注意力机制,我们首先介绍几个关键概念:
- 自注意力机制(Self-Attention Mechanism):一种基于注意力机制的处理序列数据的算法,能够自动关注输入序列中对当前位置有用的信息。
- 多头注意力(Multi-Head Attention):将一个大的自注意力层分成多个并行的小层,每个小层计算不同表示向量的注意力权重,能够从不同