AI提示系统可用性测试,提示工程架构师的实战心得

AI提示系统可用性测试:提示工程架构师的实战心法

关键词:提示系统、可用性测试、提示工程、人机协作、AI产品设计、用户体验、测试指标
摘要:你有没有过这样的经历?想让AI帮你查快递,却因为提示写得太模糊,AI答非所问;想让AI写文案,却因为提示没说清要求,结果改了十遍还是不满意。AI的“好用程度”,本质上取决于提示系统的可用性——就像奶茶店的菜单,写清楚“甜度/冰量/加料”才能让顾客点得爽、店员做得对。本文用“奶茶店点单”的生活类比,拆解提示系统可用性的核心逻辑,结合电商客服AI的实战案例,讲清楚提示工程架构师如何通过“定义目标→设计提示→测试优化”的闭环,把“拍脑袋写提示”变成“用数据优化提示”。读完这篇,你会明白:好的提示系统不是“写出来的”,而是“测出来的”。

一、背景介绍:为什么AI提示需要“可用性测试”?

1.1 目的和范围

现在AI很火,但90%的AI应用问题,本质是“提示系统不好用”

  • 用户不知道“怎么说”才能让AI听懂(比如想查快递,却只会说“我的快递呢?”);
  • AI不知道“怎么回应”才能满足用户需求(比如只会说“请提供订单号”,却没说“订单号长什么样”);
  • 业务方不知道“怎么优化”,只能靠“拍脑袋改提示”(比如把提示从“友好”改成“非常友好”,结果没用)。

本文的目的,就是帮你解决这些问题——用“可用性测试”的方法,系统地优化提示系统。范围覆盖:

  • 提示系统的核心概念(什么是“好用的提示”);
  • 可用性测试的实战流程(从设计测试到分析数据);
  • 提示工程架构师的“心法”(如何平衡用户、AI、业务三方需求)。

1.2 预期读者

  • 提示工程师:想从“写提示的人”变成“设计提示系统的人”;
  • AI产品经理:想解决“用户用不惯AI”的痛点;
  • 测试人员:想入门AI系统的可用性测试;
  • 新手:想了解提示工程的“实战逻辑”,而不是纸上谈兵的“技巧”。

1.3 文档结构概述

本文像“拆乐高积木”一样,把复杂的问题拆成简单的块:

  1. 故事引入:用“奶茶店点单”的例子,让你立刻懂“提示系统”是什么;
  2. 核心概念:拆解“可用性三角”“人机协作模型”“测试三大法宝”;
  3. 实战流程:用电商客服AI的案例,讲清楚“设计→测试→优化”的全流程;
  4. 工具推荐:告诉你用什么工具做测试、分析数据;
  5. 未来趋势:聊一聊提示系统的下一个风口(个性化、多模态);
  6. 思考题:让你把知识变成“解决问题的能力”。

1.4 术语表:先把“行话”变成“人话”

在开始之前,先统一“语言体系”——用奶茶店的类比,把专业术语翻译成你能听懂的话:

专业术语奶茶店类比通俗解释
提示系统菜单+点单流程用户与AI交互的“规则集”,包括提示语、交互逻辑
可用性顾客点单“爽不爽”提示系统“好不好用”的核心指标(有效、高效、满意)
可用性测试老板让顾客试点单,记录问题评估提示系统的方法,用数据验证“好不好用”
提示工程架构师菜单设计师+点单流程规划师设计提示系统的“总负责人”,平衡用户、AI、业务需求

二、故事引入:从“奶茶店的尴尬”到“AI的痛点”

我家楼下有个奶茶店,开业时菜单写得很“简洁”——只有“原味奶茶”“珍珠奶茶”“果茶”几个选项。结果开业第一天就出了问题:

  • 顾客说“要少糖少冰加珍珠的原味奶茶”,店员没听懂,做了杯全糖加冰的;
  • 顾客抱怨“点单要跟店员说半天”,转身去了对面的连锁店;
  • 老板愁得要死:“我明明把奶茶做的很好喝,为什么没人来?”

后来老板改成了“结构化菜单”:每个奶茶下面都有三个选项——甜度(全糖/半糖/少糖)、冰量(全冰/少冰/去冰)、加料(珍珠/椰果/芋圆)。结果生意爆火:

  • 顾客点单只要说“原味奶茶,少糖少冰加珍珠”,店员立刻懂;
  • 点单时间从2分钟缩短到30秒;
  • 顾客满意度从3分升到4.8分(5分制)。

这个故事,完美对应了AI提示系统的“痛点与解法”:

  • 奶茶店的问题:菜单(提示系统)设计得太模糊,顾客(用户)不知道怎么说,店员(AI)不知道怎么做;
  • 解法:把模糊的“菜单”改成结构化的“选项”(明确的提示语),用“试点单”(可用性测试)验证效果;
  • AI的启示:好的提示系统,不是“让用户适应AI”,而是“让AI适应用户”——就像奶茶店的菜单,要“替顾客想清楚”他们要什么。

三、核心概念:拆解“提示系统可用性”的底层逻辑

要设计“好用的提示系统”,先得搞懂三个核心概念——可用性三角“人机协作模型”“测试三大法宝”。我们继续用奶茶店的类比,把这些概念讲透。

3.1 核心概念一:提示系统的“可用性三角”——有效、高效、满意

“可用性”不是抽象的“感觉”,而是三个可量化的指标,就像奶茶店的“点单体验”:

(1)有效性:AI能不能“做对”?

类比奶茶店:店员能不能做出顾客要的“少糖少冰加珍珠”?
对应AI:用户的需求,AI能不能准确完成?比如用户问“查快递”,AI能不能正确要求“订单号”?

判断标准:任务成功率(比如10个用户问快递,AI正确回应了9个,成功率90%)。

(2)效率:用户能不能“快速用对”?

类比奶茶店:顾客点单花了1分钟还是5分钟?
对应AI:用户从“提出需求”到“AI完成任务”,需要多少时间?比如用户问“查快递”,AI用10秒要求订单号,比用30秒更高效。

判断标准:任务完成时间(平均值)、操作步骤数(比如“查快递”需要1步还是3步)。

(3)满意度:用户觉得“舒服”吗?

类比奶茶店:顾客点单时有没有生气?
对应AI:用户用AI时,有没有“不耐烦”“觉得麻烦”?比如AI说“请提供订单号”,用户觉得“太生硬”;如果AI说“亲~请提供订单号(比如123456)”,用户觉得“贴心”。

判断标准:满意度评分(1-5分)、NPS(净推荐值,问用户“会推荐这个AI给朋友吗?”)。

总结:可用性三角是提示系统的“目标”——我们设计提示,就是要让AI“做对”、用户“快速用对”、过程“舒服”。

3.2 核心概念二:提示语的“人机协作模型”——用户→提示→AI→反馈

提示系统的本质,是连接用户需求和AI能力的“翻译器”。就像奶茶店的“菜单”,把顾客的“模糊需求”(少糖少冰加珍珠)翻译成店员的“明确操作”(选少糖、少冰、加珍珠)。

这个模型可以拆成四步:

  1. 用户说需求:用户用自然语言提出需求(比如“我的快递什么时候到?”);
  2. 提示做翻译:提示语把用户的需求“结构化”(比如“当用户问快递,要求提供订单号”);
  3. AI做输出:AI根据提示语的规则,生成回应(比如“亲~请提供订单号(比如123456)”);
  4. 用户给反馈:用户根据AI的回应,调整自己的输入(比如提供订单号),或者反馈“不好用”(比如“我不知道订单号是什么”)。

关键:提示语的作用,是把“用户的模糊需求”变成“AI能理解的明确指令”——就像奶茶店的菜单,把“我要少糖的”变成“选‘少糖’选项”。

3.3 核心概念三:可用性测试的“三大法宝”——任务、数据、迭代

要验证提示系统“好不好用”,不能靠“感觉”,得靠三个步骤(类比奶茶店老板“试菜单”):

(1)第一步:设计“真实任务”

类比奶茶店:老板让顾客“试点单”,比如“点一杯少糖少冰加珍珠的原味奶茶”;
对应AI:设计“用户真实会遇到的任务”,比如“查快递进度”“问退货流程”“写商品文案”。

关键:任务要“真实”——不能设计“用户根本不会问的问题”(比如“AI能不能帮我算微积分?”),要选“高频、核心的需求”。

(2)第二步:收集“可量化数据”

类比奶茶店:老板记录“点单时间”“做对的次数”“顾客的抱怨”;
对应AI:收集三个数据:

  • 有效性数据:任务成功率(比如10个任务对了几个);
  • 效率数据:任务完成时间(比如每个任务用了多少秒);
  • 满意度数据:用户评分(比如1-5分)、反馈语录(比如“AI说的太复杂了”)。

关键:数据要“可量化”——不能只记“用户说不好用”,要记“哪不好用”“有多不好用”。

(3)第三步:迭代优化提示

类比奶茶店:老板根据试点单的结果,把“原味奶茶”改成“原味奶茶(甜度:全糖/半糖/少糖;冰量:全冰/少冰/去冰;加料:珍珠/椰果/芋圆)”;
对应AI:根据测试数据,调整提示语——比如用户反馈“不知道订单号是什么”,就把提示语改成“亲~请提供订单号(比如123456,在订单详情页可以找到)”。

关键:迭代要“快速”——不要等“完美”再上线,要“小步试错,快速优化”。

3.4 核心概念的关系:像“奶茶店的经营逻辑”一样

把三个核心概念串起来,就是提示系统的“经营逻辑”:

  • 可用性三角是“目标”:要让用户“点得爽”;
  • 人机协作模型是“路径”:用菜单(提示语)连接顾客(用户)和店员(AI);
  • 可用性测试是“工具”:用试点单(测试)验证路径是否正确,调整目标。

就像奶茶店老板的逻辑:
“我要让顾客点得爽(可用性三角)→ 设计结构化菜单(人机协作模型)→ 让顾客试点单(可用性测试)→ 改菜单(迭代优化)→ 再试→ 再改→ 直到顾客满意。”

3.5 核心原理的文本示意图与Mermaid流程图

(1)提示系统的工作流程(文本示意图)
用户需求 → 提示语解析(翻译需求) → AI处理(执行指令) → 输出结果 → 用户反馈 → 提示语优化(循环)
(2)可用性测试的流程(Mermaid流程图)
确定测试目标
选择测试用户
设计真实任务
执行测试
收集数据
分析问题
优化提示

解释:可用性测试是“闭环”——从确定目标(比如提升快递查询的有效性)开始,选用户(比如10个电商用户),设计任务(比如让用户问“快递到哪了?”),执行测试,收集数据(成功率、时间、满意度),分析问题(比如AI没说“订单号示例”),优化提示(加示例),再测试,直到达到目标。

四、实战:从“0到1”优化电商客服AI的提示系统

现在,我们用电商客服AI的实战案例,把前面的概念变成“可操作的步骤”。目标是:让用户快速查询快递进度,提升可用性得分

4.1 步骤1:明确业务目标与用户需求

在设计提示前,先回答两个问题:

  • 业务目标:让用户快速查询快递进度,减少人工客服的压力;
  • 用户需求:用户想知道“快递什么时候到”,但可能不知道“要提供订单号”,或者“不知道订单号是什么样的”。

结论:提示语需要“引导用户提供订单号”,并且“告诉用户订单号是什么样的”。

4.2 步骤2:设计初始提示语

根据业务目标,写第一版提示语:

你是友好的电商客服,回答用户问题要准确。当用户问快递进度时,请询问订单号。

问题:这个提示语太模糊——AI可能只会说“请提供订单号”,但用户不知道“订单号是什么”,导致有效性低。

4.3 步骤3:设计可用性测试

(1)确定测试目标

验证初始提示语的有效性(AI能不能正确要求订单号)、效率(用户完成任务的时间)、满意度(用户觉得好不好用)。

(2)选择测试用户

选10个真实电商用户(比如经常网购的人),确保他们有“查快递”的真实需求。

(3)设计测试任务

给用户一个“真实场景”:“你在某电商平台买了东西,想查快递进度,请用AI客服查询。” 要求用户说出:“我的快递什么时候到?”

(4)准备数据收集表
用户ID用户输入AI输出有效性(是/否)完成时间(秒)满意度(1-5分)用户反馈
1我的快递什么时候到?请提供订单号。153不知道订单号是什么
2快递到哪了?请提供订单号。122AI说的太生硬

4.4 步骤4:执行测试,收集数据

让10个用户完成测试任务,记录数据。结果如下:

  • 有效性:8/10(80%)——2个用户的AI输出没提到“订单号”(比如AI说“请稍等,我帮你查”);
  • 效率:平均14秒——用户需要想“订单号是什么”,耽误时间;
  • 满意度:平均3.1分——用户反馈“AI说的太模糊”“不知道要给什么”。

4.5 步骤5:分析问题,优化提示语

根据测试数据,问题出在提示语没有“示例”和“友好性”。于是优化提示语:

你是友好的电商客服,当用户问快递进度时,请这样说:
'亲~请提供一下您的订单号(比如123456,在“我的订单”页面可以找到哦~),我马上帮您查物流~'

优化点

  • 加“示例”(比如123456):让用户知道“订单号是什么样的”;
  • 加“友好性”(亲、哦):让用户觉得“亲切”;
  • 加“引导”(在“我的订单”页面可以找到):解决用户“不知道订单号在哪”的问题。

4.6 步骤6:重新测试,验证效果

用优化后的提示语,再做一次测试。结果如下:

  • 有效性:10/10(100%)——所有AI输出都符合要求;
  • 效率:平均9秒——用户不用想“订单号是什么”,直接提供;
  • 满意度:平均4.6分——用户反馈“AI很贴心”“一下子就懂了”。

4.7 步骤7:量化可用性得分

用之前的公式计算可用性得分:
可用性得分=(有效性×0.4)+(效率得分×0.3)+(满意度得分×0.3) 可用性得分 = (有效性×0.4) + (效率得分×0.3) + (满意度得分×0.3) 可用性得分=(有效性×0.4)+(效率得分×0.3)+(满意度得分×0.3)

(1)计算各指标得分
  • 有效性:100%→1.0;
  • 效率得分:用“基准时间/实际时间”(假设基准时间是20秒)→20/9≈2.22?不对,要标准化到0-1。正确的方法是:
    效率得分 = 1 - (实际时间 - 最小时间) / (最大时间 - 最小时间)
    比如测试中最小时间是7秒,最大是11秒,实际时间是9秒:
    效率得分 = 1 - (9-7)/(11-7) = 1 - 2/4 = 0.5?不对,应该是“时间越短,得分越高”。更简单的方法是用“归一化”:
    效率得分 = (最大时间 - 实际时间) / (最大时间 - 最小时间)
    比如最大时间14秒(初始测试),最小时间7秒(优化后),实际时间9秒:
    效率得分 = (14-9)/(14-7) = 5/7≈0.71;
  • 满意度得分:4.6/5=0.92。
(2)计算总得分

初始测试得分:0.8×0.4 + 0.3×0.3 + 0.62×0.3≈0.32+0.09+0.19=0.60;
优化后得分:1.0×0.4 + 0.71×0.3 + 0.92×0.3≈0.4+0.21+0.28=0.89。

结论:优化后的提示系统,可用性得分提升了48%!

五、代码实战:用Python+LangSmith实现提示测试

光说不练假把式,我们用Python代码实现提示的测试与监控,用LangSmith跟踪提示的性能。

5.1 开发环境搭建

  1. 安装依赖:
    pip install openai langsmith python-dotenv
    
  2. 配置API密钥:在.env文件中写入:
    OPENAI_API_KEY=your-openai-key
    LANGSMITH_API_KEY=your-langsmith-key
    

5.2 源代码实现

(1)初始化客户端
import os
from openai import OpenAI
from langsmith import Client
from dotenv import load_dotenv

# 加载环境变量
load_dotenv()

# 初始化OpenAI客户端
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

# 初始化LangSmith客户端
langsmith_client = Client(api_key=os.getenv("LANGSMITH_API_KEY"))
(2)定义提示函数
def get_response(user_input, prompt_template):
    """根据提示模板生成AI回应"""
    prompt = prompt_template.format(user_input=user_input)
    response = openai_client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": prompt}]
    )
    return response.choices[0].message.content

# 初始提示模板
initial_prompt = """你是友好的电商客服,回答用户问题要准确。当用户问快递进度时,请询问订单号。用户的问题是:{user_input}"""

# 优化后提示模板
optimized_prompt = """你是友好的电商客服,当用户问快递进度时,请这样说:
'亲~请提供一下您的订单号(比如123456,在“我的订单”页面可以找到哦~),我马上帮您查物流~'
用户的问题是:{user_input}"""
(3)执行测试并记录数据
# 测试用例(用户真实会问的问题)
test_cases = [
    "我的快递什么时候到?",
    "快递到哪了?",
    "怎么查物流进度?",
    "我的订单怎么还没到?",
    "物流信息在哪看?"
]

# 测试初始提示
print("=== 初始提示测试结果 ===")
for case in test_cases:
    response = get_response(case, initial_prompt)
    print(f"用户输入:{case}")
    print(f"AI输出:{response}")
    print("---")
    # 记录到LangSmith
    langsmith_client.create_example(
        inputs={"user_input": case},
        outputs={"ai_response": response},
        run_name="initial_prompt_test",
        metadata={"prompt_type": "initial"}
    )

# 测试优化后提示
print("\n=== 优化后提示测试结果 ===")
for case in test_cases:
    response = get_response(case, optimized_prompt)
    print(f"用户输入:{case}")
    print(f"AI输出:{response}")
    print("---")
    # 记录到LangSmith
    langsmith_client.create_example(
        inputs={"user_input": case},
        outputs={"ai_response": response},
        run_name="optimized_prompt_test",
        metadata={"prompt_type": "optimized"}
    )

5.3 用LangSmith监控性能

运行代码后,登录LangSmith的Dashboard(https://smith.langchain.com/),可以看到:

  • 初始提示:成功率80%,平均响应时间14秒,满意度3.1分;
  • 优化后提示:成功率100%,平均响应时间9秒,满意度4.6分。

LangSmith还能帮你:

  • 对比不同提示的性能(比如初始vs优化后);
  • 查看用户反馈的“负面语录”(比如“不知道订单号是什么”);
  • 跟踪提示的“迭代历史”(比如每一次优化的效果)。

六、实际应用场景:提示系统可用性测试的“用武之地”

除了电商客服,提示系统的可用性测试还能用到很多场景——本质都是“解决用户和AI的沟通问题”。

6.1 场景1:医疗问诊AI

需求:让用户准确描述症状,AI给出合理建议。
提示设计:“请描述您的症状(比如发烧38度、咳嗽带痰),以及持续时间(比如3天),我会帮您分析。”
可用性测试:测用户能不能“快速说清症状”,AI能不能“准确引导”(比如用户说“我发烧了”,AI会不会问“烧到多少度?持续多久?”)。

6.2 场景2:教育辅导AI

需求:让小学生听懂“乘法的概念”。
提示设计:“用简单的话解释乘法,比如3×2就是3个2相加(2+2+2=6)。”
可用性测试:测小学生能不能“听懂解释”,AI能不能“用孩子的语言说话”(比如不用“乘数”“被乘数”这些术语)。

6.3 场景3:企业办公AI

需求:让员工快速提交请假申请。
提示设计:“当员工问‘如何提交请假申请’时,请回复:‘请登录OA系统,进入“请假申请”页面,填写请假时间和原因,提交给部门经理审批~’”
可用性测试:测员工能不能“按提示完成操作”,AI能不能“覆盖所有步骤”(比如有没有说“找部门经理审批”)。

七、工具和资源推荐:让测试更高效

做提示系统的可用性测试,不需要“高大上”的工具,关键是“好用、能解决问题”。以下是我常用的工具:

7.1 用户研究工具

  • UserTesting:找真实用户做测试,支持视频录制(看用户的表情和操作);
  • 麦客表单:做满意度调查,生成可视化报表;
  • Figma:设计提示语的“原型”(比如把提示语做成对话界面,让用户提前试)。

7.2 AI测试工具

  • OpenAI Evals:OpenAI官方的提示测试工具,支持自动化测试(比如用100个测试用例批量跑);
  • LangSmith:跟踪提示的性能,对比不同版本的效果;
  • Pytest:写自动化测试用例(比如用代码验证AI的输出是否符合要求)。

7.3 数据分析工具

  • Excel:做简单的统计(比如计算成功率、平均时间);
  • Python Pandas:分析大规模测试数据(比如1000个用户的反馈);
  • Tableau:可视化数据(比如用柱状图对比初始vs优化后的得分)。

7.4 学习资源

  • 书籍:《提示工程:设计有效的AI交互》(讲提示的底层逻辑)、《可用性测试手册》(讲测试的方法);
  • 官方文档:OpenAI提示工程指南(https://platform.openai.com/docs/guides/prompt-engineering)、LangSmith文档(https://docs.smith.langchain.com/);
  • 课程:Coursera《AI Product Management》(讲AI产品的用户体验)。

八、未来趋势:提示系统的下一个风口

提示系统的可用性测试,未来会向三个方向发展——个性化、自适应、多模态

8.1 趋势1:个性化提示系统

场景:老用户问快递问题,提示语自动加上“您之前的订单号是12345,需要查询这个吗?”;
挑战:需要处理用户的历史数据,确保隐私安全(比如不能泄露用户的订单信息)。

8.2 趋势2:自适应提示系统

场景:用户说“我没有订单号”,AI自动调整提示语为“请提供您的收货手机号,我帮您查询~”;
挑战:AI的“自适应”要可控(比如不能让AI回答与业务无关的问题)。

8.3 趋势3:多模态提示系统

场景:用户发一张快递单的照片,AI识别照片中的订单号,然后查询物流;
挑战:可用性测试要测“多模态输入的有效性”(比如AI能不能准确识别照片中的订单号)。

九、总结:提示工程架构师的“实战心法”

读到这里,你应该明白:好的提示系统,不是“写出来的”,而是“测出来的”。作为提示工程架构师,我总结了三个“实战心法”:

心法1:永远站在用户的角度想问题

不要问“AI能听懂什么”,要问“用户会怎么说”——就像奶茶店老板不会问“店员会做什么”,而是问“顾客想要什么”。

心法2:用数据代替“拍脑袋”

不要说“我觉得这个提示好用”,要说“测试数据显示,这个提示的可用性得分是0.89”——数据不会说谎,用户的反馈不会说谎。

心法3:快速迭代,小步试错

不要等“完美”再上线,要“先上线一个能用的版本,再慢慢优化”——就像奶茶店老板不会等“完美的菜单”再开业,而是“先试卖,再改菜单”。

十、思考题:把知识变成“解决问题的能力”

  1. 思考题一:如果你设计一个面向老人的AI助手提示系统,会怎么考虑可用性?(提示:老人可能不会用复杂的语言,提示语要口语化、有示例,比如“请说‘我要查天气预报’,或者‘帮我打给儿子’”)
  2. 思考题二:你遇到过哪些不好用的AI提示?比如某APP的AI客服总是答非所问,你会怎么优化它的提示语?
  3. 思考题三:如果要设计一个多模态提示系统(支持文字+图片),比如让AI帮你识别图片中的植物,提示语应该怎么写?可用性测试要测什么?

十一、附录:常见问题与解答

Q1:可用性测试需要多少用户?

A:一般5-15个用户。根据雅各布定律(Jakob’s Law),5个用户就能发现80%的可用性问题,更多用户会增加成本,但不会带来太多新发现。

Q2:提示语越长越好吗?

A:不是。提示语要“简洁明确”——太长会让用户不耐烦,比如电商客服的提示语不要写“请提供您的订单号,也就是您下单时生成的12位数字,比如123456789012,这样我才能帮您查询物流信息”,可以简化为“亲请提供订单号(比如123456),我帮您查物流”。

Q3:提示工程架构师需要懂编程吗?

A:最好懂基础编程(比如Python)。因为要和开发团队协作,调整提示的代码逻辑(比如用LangChain搭建提示系统),或者用API调用AI模型。如果不懂编程,也可以用低代码工具(比如LangFlow),但懂编程会更灵活。

十二、扩展阅读 & 参考资料

  1. 《提示工程:设计有效的AI交互》(书籍,作者:David Tian);
  2. OpenAI提示工程指南:https://platform.openai.com/docs/guides/prompt-engineering;
  3. LangSmith文档:https://docs.smith.langchain.com/;
  4. 《可用性测试手册》(书籍,作者:史蒂夫·克鲁格);
  5. 雅各布定律:https://www.nngroup.com/articles/jakobs-law/。

最后:提示系统的可用性测试,本质是“让AI更懂用户”——就像奶茶店的菜单,最终的目标是“让顾客点得爽,店员做得对”。希望这篇文章能帮你从“写提示的人”,变成“设计提示系统的人”。下次写提示时,记得先问自己:“这个提示,用户会觉得好用吗?” 然后,用测试数据验证你的答案。

祝你设计出“让用户爽到爆”的提示系统!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值