MPC算法 速度追踪控制carsim ➕ simulink +matlab
MPC算法 速度追踪控制
carsim ➕ simulink +matlab
实现:定速巡航、跟随巡航
分层控制:
上层MPC算法,输入:车速与加速度及期望车速
输出 :期望加速度
下层控制 发动机逆模型加,及制动器逆模型和切换逻辑
输入:期望加速度
输出:节气门开度与制动主缸压力
文件包括:mpc代码、simulink模型、Carsim模型、参考论文。
以下文字及示例代码仅供参考
文章目录
使用 MPC(Model Predictive Control,模型预测控制) 实现车辆速度追踪控制,并结合 CarSim + Simulink + MATLAB 进行联合仿真,是自动驾驶、智能驾驶控制系统开发中非常常见的技术路径。
🚗 一、系统目标
- 实现对参考速度的高精度跟踪
- 使用 MPC 控制器 动态调节油门/刹车
- 在 MATLAB/Simulink 中搭建控制器
- 与 CarSim 联合仿真,验证实际控制效果
- 可扩展为纵向+横向联合控制的基础模块
🔧 二、所需工具
工具 | 功能 |
---|---|
MATLAB | 编写 MPC 控制算法、参数设置 |
Simulink | 搭建控制逻辑、与 CarSim 接口 |
CarSim | 提供高保真车辆动力学模型 |
Simulink Coder / Simulink Desktop Real-Time(可选) | 实时仿真支持 |
📦 三、整体系统结构图
[参考速度] → [MPC控制器]
↓
[油门/刹车指令] → [CarSim车辆模型]
↓
[实际速度反馈] ← [Simulink]
↓
[误差计算 + MPC更新]
🧮 四、MPC控制器设计(基于MATLAB)
✅ 1. 系统建模(简化纵向动力学)
假设车辆纵向动力学为:
v ˙ = 1 m ( F t h r o t t l e − F b r a k e − F r e s i s t a n c e ) \dot{v} = \frac{1}{m}(F_{throttle} - F_{brake} - F_{resistance}) v˙=m1(Fthrottle−Fbrake−Fresistance)
我们将其线性化或使用状态空间表示。这里以一个简化模型为例:
% 纵向动力学状态空间模型
A = [0]; B = [0.1]; C = [1]; D = [0];
sys = ss(A, B, C, D);
Ts = 0.1; % 采样时间
sysd = c2d(sys, Ts); % 离散化
✅ 2. 设计 MPC 控制器(使用 MPC Toolbox)
% 创建 MPC 控制器对象
mpcobj = mpc(sysd, Ts, 10, 3); % 预测步长10,控制步长3
% 设置约束
mpcobj.MV.Min = -1; % 刹车最大值
mpcobj.MV.Max = 1; % 油门最大值
mpcobj.MV.RateMin = -2; % 加速度变化率限制
mpcobj.MV.RateMax = 2;
% 权重设置
mpcobj.Weights.OV = 1; % 输出误差权重
mpcobj.Weights.MV = 0.1;% 输入变化惩罚
mpcobj.Weights.MVRate = 0.01;
⚙️ 五、Simulink 模型搭建
✅ 1. Simulink 架构说明
- Input Reference Speed:参考速度信号(阶跃、斜坡、正弦等)
- MPC Controller Block:使用
mpcmove
函数封装成 S-Function 或 MATLAB Function Block - CarSim Interface Block:连接到 CarSim 的 DLL 模型
- Output Feedback:从 CarSim 获取当前速度用于闭环控制
✅ 2. MATLAB Function Block 示例(MPC 控制逻辑)
function u = mpc_step(y, r)
% y: 当前速度;r: 参考速度
persistent mpcobj xmpc
if isempty(xmpc)
mpcobj = coder.loadDeepLearningNetwork('myMPCObj.mat'); % 提前保存好的 MPC 对象
xmpc = mpcstate(mpcobj);
end
u = mpcmove(mpcobj, xmpc, y, r);
注意:在使用前需要将 MPC 控制器对象保存为
.mat
文件:
save('myMPCObj.mat', 'mpcobj');
🔄 六、CarSim 联合仿真配置
✅ 1. 在 CarSim 中导出 DLL 模型
- 打开 CarSim 软件
- 选择车型和场景
- 导出为 Simulink DLL 模块(菜单栏:Tools > Export to Simulink)
- 生成
.dll
文件后,在 Simulink 中插入该模块
✅ 2. Simulink 中配置接口变量
- 输入变量:
Throttle
(油门输入)Brake
(刹车输入)
- 输出变量:
Vel
(车速)Accel
(加速度)
📈 七、仿真结果建议展示内容
- 速度跟踪曲线:参考 vs 实际
- 控制量输出(油门/刹车)
- 误差收敛过程
- 不同工况测试(加速、减速、恒速)
📘 八、推荐论文方向(可用于科研/毕业设计)
如果你希望将此内容拓展为一篇科研论文(如《汽车工程》《IEEE Transactions on Vehicular Technology》),可以考虑以下方向:
- 基于 MPC 的自适应巡航控制系统(ACC)
- 多目标 MPC 控制器设计(节能 + 安全距离)
- 数据驱动 MPC(使用 CarSim 仿真数据训练 MPC 参数)
- 考虑轮胎打滑、路面摩擦等非线性因素的 MPC 改进
- MPC 与强化学习结合的混合控制策略
📌 总结:
通过 MATLAB 的 MPC Toolbox + Simulink + CarSim 联合仿真,你可以快速实现车辆速度跟踪控制系统的开发与验证,为后续高级驾驶辅助系统(ADAS)或自动驾驶研究打下坚实基础。