一文读懂图神经网络(Graph Neural Networks)

在过去十年间,神经网络在处理诸如图像和文本这类结构化数据时表现出色。像卷积网络、循环神经网络、自动编码器等热门模型,在处理矩阵或向量等表格格式的数据时,效果都非常好。但对于非结构化数据呢?图数据又该如何处理?是否存在能有效从这类数据中学习的模型?从标题或许你已猜到答案,那就是图神经网络(Graph Neural Networks,简称GNNs)。

图神经网络早在2005年就已被提出(如同许多优秀理念一样),不过在近五年才开始受到广泛关注。GNNs能够对图中节点间的关系进行建模,并生成图的数值表示。其重要性不言而喻,因为现实中有大量数据都能以图的形式呈现,比如社交网络、化学化合物、地图、交通系统等等。接下来,让我们一同探究GNNs背后的基本原理以及它为何能发挥作用。

首先,明确一下我们要解决的基本问题:我们希望将给定的图映射到单个标签上,这个标签可以是数值、类别,或者其他类型。换句话说:
F ( Graph ) = embedding ,我们要找到这个函数F。举个例子,假设每个图代表一种化学化合物或分子,标签则是该分子用于生产特定药物的可能性。如果我们能从每个图中提取出这个标签,那就相当于找到了一种预测哪些分子更可能用于药物生产的方法,是不是很酷?

那我们该如何实现呢?其实,我们已经知晓一种能在图上使用的神经网络(某种程度上)。仔细想想,循环神经网络可以作用于一种特殊的图——链式图(本质上就是一条线的图)。时间序列实际上就是链式图,每个时间戳都是一个节点,依次相连。所以,我们可以构建一个网络,其中每个图节点都是一个循环单元(比如LSTM或其他),节点信息以嵌入的形式像传递消息一样在链中传输。由于这些单元都是循环的,嵌入在图中传播时信息不会丢失,这其实就是我们熟悉的循环神经网络,和用于语言翻译及其他自然语言处理应用的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值