在当下,关于大语言模型(LLMs)面向普通大众和决策者的文章层出不穷。然而,不少此类文章要么过于简单,未能深入剖析;要么涉及的技术层面过于复杂,让人望而生畏。本文将以一种平衡的视角,为你解读大语言模型的本质及其基本运作过程。这也是大语言模型系列文章的开篇之作,重点聚焦以下几个关键问题:理解大语言模型的基本原理、探索运行大语言模型的方法。
很多人都看过不少关于大语言模型的解释,虽然这些解释从技术角度看都是正确的,但对于商业人士来说,却很难从中获取有价值的信息。从客户常提出的问题中可以发现,问题并非出在复杂性与易懂性之间的失衡,而是大语言模型这个概念,与他们内心的世界模型难以精准匹配。这就导致他们要么不清楚大语言模型能解决什么问题,要么将其视为神秘的黑匣子。
因此,我们不妨换个角度来认识大语言模型。这种视角将清晰、有条理地勾勒出大语言模型的潜在应用场景与局限性,帮助你在商业规划中避免许多代价高昂的错误。
大语言模型及其相关概念
为了更好地理解大语言模型的工作原理及其真正能力,我们先来了解几个关键概念。后续,我们会结合不同的使用场景对这些概念进行分析,以便你能更清楚地明白如何让大语言模型与你的业务需求相契合。部分概念可能会有所简化,或存在细微的不准确之处,但这有助于你从整体上把握这个主题。
你或许听闻过大语言模型是“预测下一个单词”,就像是“超级自动补全”。刚开始,你可以这样去理解它。从技术层面来讲,当你与基于大语言模型的聊天机器人对话时,整个对话内容都会输入到大语言模型中,它会尝试预测下一个最有可能出现的单词。接着,包含这个单词的整个文本又会被再次输入,进而预测下一个单词,如此循环。
所以实际上,大语言模型并非是在回答你的问题,它只是基于其内部