使用预训练PoseNet模型在安卓应用中进行人体关键点检测

在当今的计算机视觉领域,姿态估计是一项关键任务,它旨在检测物体的姿态,也就是物体的方向和位置。其实现原理是通过检测一系列关键点,借此了解物体的主要部分,并估计其当前的方向。基于这些关键点,我们能够以2D或3D形式构建物体的形状。在本篇教程中,我们将利用预训练的PoseNet模型,在安卓应用里检测人体的关键点。

一、基础安卓项目

为节省时间,我们以TensorFlow Lite PoseNet安卓演示项目为起点。该项目运用预训练的PoseNet模型,此模型是MobileNet的转移版本,可从特定链接下载。它接收尺寸为(257, 257)的图像,并返回17个人体关键点的位置,像鼻子、眼睛、肩膀等部位的位置。每个关键点都有一个相关的置信度值,范围从0.0到1.0。模型会返回两个列表,一个代表关键点位置,另一个包含每个关键点的置信度。通常设置0.5及以上的置信度阈值来判断关键点是否被接受。该项目用Kotlin编程语言实现,原本可访问安卓相机来捕获图像,对每张捕获的图像,模型预测关键点位置并显示叠加了这些关键点的图像。而在本教程中,我们会简化项目,让其处理从图库中选择的单张图像,并在眼睛部位添加类似Snapchat的遮罩效果。

二、移除不必要代码

原项目配置为处理相机捕获的图像,这并非我们当前目标,所以要移除与访问或捕获图像相关的代码。需编辑三个文件:PosenetActivity.kt活动文件、activity_posenet.xml布局资源文件以及AndroidManifest.xml文件。在PosenetActivity.kt文件中,要删除诸如CameraDevice.StateCallback()、CameraCaptureSession.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值